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Abstract 
In this paper, we (Abrahamsen, Mollerup and Hansen) extend an empirical root density distribution 
function (Gerwitz and Page, 1974) based on densely populated homogeneous fields to row crops. 
The row crops are modeled as having a uniform density in the direction parallel to the rows, but 
variable in the direction perpendicular to the row. In each case (homogenous fields and row crops), 
the method to find the distribution parameters from the root dry matter and the size of the root 
zone is described. 

1 Densely populated (homogenous) fields 
In accordance with Gerwitz and Page (1974), the root density distribution, Lz, for a crop can be 
described as: 

𝐿𝐿𝑧𝑧 = 𝐿𝐿0 ∙ 𝑒𝑒−𝑎𝑎∙𝑧𝑧 (10.2.1) 
 
where L0 is the root density at the soil surface, a is a distribution parameter and z is the depth below 
soil surface. 

We assume here that the density is uniformly distributed on the horizontal plane, an assumption 
that fails with e.g. row crops. The parameters a and L0 will both vary with time. For a production 
oriented simulation model like Daisy (Hansen et al., 1991; Abrahamsen and Hansen, 2000), it can be 
more convenient to specify the density in terms of accumulated root matter, Mr, and the total root 
zone depth, dc, as described in Hansen et al. (1990) and repeated below. 

We define the root depth at the lowest depth where the root density is above or at a specified 
threshold, Lm. By inserting this in eq. (10.3.1), we get: 

𝐿𝐿𝑚𝑚 = 𝐿𝐿𝑑𝑑𝑐𝑐 = 𝐿𝐿0 ∙ 𝑒𝑒−𝑎𝑎𝑑𝑑𝑐𝑐  (10.2.2) 
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We convert the root mass to root length, lr, by assuming the specific root length, Sr, is a known 
constant (rather than varying with depth): 

𝑙𝑙𝑟𝑟 = 𝑆𝑆𝑟𝑟𝑀𝑀𝑟𝑟 (10.2.3) 
 
The total root length is also the integral of the root density over the profile:  

𝑙𝑙𝑟𝑟 = � 𝐿𝐿𝑧𝑧𝑑𝑑𝑑𝑑 = � 𝐿𝐿0𝑒𝑒−𝑎𝑎𝑧𝑧𝑑𝑑𝑑𝑑 =
𝐿𝐿0
𝑎𝑎

∞

0

∞

0
 (10.2.4) 

 
From eq. (10.2.4), L0 can be isolated, and inserted into eq. (10.2.2): 

𝐿𝐿𝑚𝑚 = 𝑙𝑙𝑟𝑟 ∙ 𝑎𝑎 ∙ 𝑒𝑒−𝑎𝑎𝑑𝑑𝑐𝑐  (10.2.5) 
 
If we now define W =-a∙dc, substitute the value into eq. (10.2.5), and isolate the known values on 
the right side, the result is:  

𝑊𝑊 ∙ 𝑒𝑒𝑊𝑊 = −𝐿𝐿𝑚𝑚
𝑑𝑑𝑐𝑐
𝑙𝑙𝑟𝑟

 (10.2.6) 

 
The solution to this equation with regard to W happens to be the definition of the Lambert-W 
function (Euler, 1783; Lambert, 1758). The function on the left-hand side of the equation is depicted 
on Figure 1: 
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Figure 1. W∙eW as function of W.it should be noted from eq. (10.3.6) that the W and W∙eW is always negative in our 
case. 

As we can deduct the value of W from the function in Figure 1, we can find the desired density 
parameters L0 and a by substituting back:  

𝑎𝑎 = −𝑊𝑊/𝑑𝑑𝑐𝑐  (10.2.7) 

𝐿𝐿0 =
𝐿𝐿𝑚𝑚

𝑒𝑒−𝑎𝑎∙𝑑𝑑𝑐𝑐
= 𝐿𝐿𝑚𝑚 ∙ 𝑒𝑒𝑎𝑎∙𝑑𝑑𝑐𝑐  (10.2.8) 

 



1.1 Numeric solution to W 
To solve the equation shown in Figure 1, we start by dividing the function into monotonic intervals 
by finding the derivative:  

𝑑𝑑𝑊𝑊𝑒𝑒𝑊𝑊

𝑑𝑑𝑊𝑊
= 𝑒𝑒𝑊𝑊 +𝑊𝑊𝑒𝑒𝑊𝑊 (10.2.9) 

The equation: 

𝑒𝑒𝑊𝑊 + 𝑊𝑊𝑒𝑒𝑊𝑊 = 0 (10.2.10) 

has one solution, W = -1. The expression eW(1+W) is decreasing below -1 and increasing above -1. 
Thus, W = -1 is a global minimum.  

Since 𝑙𝑙𝑙𝑙𝑙𝑙𝑊𝑊→−∞𝑊𝑊𝑒𝑒𝑊𝑊 = 0, we get a single solution for W when −𝐿𝐿𝑚𝑚
𝑑𝑑𝑐𝑐
𝑙𝑙𝑟𝑟

 is exactly at the bottom point 

(-1e-1), two when it is above (but not greater than 1), and none when it is below. The latter situation 
corresponds to a case, where there is insufficient root, lr, to satisfy the minimal root density, Lm, 
within the total root zone depth, dc.   

Both solutions, if present, are valid, but represent different distributions. 

• The solution for W < -1 represents a large a-parameter. From eq. (10.2.8) we see this also means 
that L0 is large. Thus, the solution corresponds to a root zone with a high density near the top 
that decreases rapidly to Lm at the bottom of the root zone, and continues to decrease, so only a 
small contribution to the total root length will be present from below the root zone. 

• The solution for W > -1 (and thus small values of a and L0) corresponds to a low root density 
near the top that decreases slowly, and thus gives a larger contribution to the total root length 
from below the root zone. 

 
As the total root length increases, pressing W towards 0 or -∞, the difference between the solutions 
grows. When there are just enough roots to satisfy the constraints at W = -1, the two solutions 
converge into one. As we prefer that the roots stay mostly within the root zone, we choose the 
solution for W < -1. We can thus find W numerically using Newton’s method and an initial guess of -
2. 
 

1.2 Limited growth 
The distribution in eq. (10.2.1) implies a gradual decrease of roots going towards, but never reaching 
zero. There are two problems with this. The first one is empirical. In some soils it does not match 
observations. Instead of a gradual decrease, there is a sharp decrease at a specific depth, as the 
roots are unable to penetrate further down. The other one is practical, as too large a root zone 
makes computation impractical.  
 
The first problem is solved by dividing the root depth into a crop specific and soil independent 
potential root depth, dc,pot, and a soil specific and crop independent maximum root depth, ds. The 
actual root depth, da, is then the shallowest of these two. 

𝑑𝑑𝑎𝑎 = 𝑙𝑙𝑙𝑙𝑚𝑚�𝑑𝑑𝑐𝑐,𝑝𝑝𝑝𝑝𝑝𝑝 ,𝑑𝑑𝑠𝑠� (10.2.11) 



We now create a modified root density function, Lz
*, by defining it to zero below da, and scaling Lz to 

preserve mass balance above da. 

𝐿𝐿𝑧𝑧∗ = �𝑘𝑘
∗ ∙ 𝐿𝐿𝑧𝑧  𝑙𝑙𝑖𝑖 𝑑𝑑 ≤ 𝑑𝑑𝑎𝑎

0            𝑙𝑙𝑖𝑖 𝑑𝑑 > 𝑑𝑑𝑎𝑎
 (10.2.12) 

 
where 

𝑘𝑘∗ =
𝐿𝐿𝑟𝑟

∫ 𝐿𝐿𝑧𝑧𝑑𝑑𝑑𝑑
𝑑𝑑𝑎𝑎
0

 (10.2.13) 

thus, solving both problems. 
 

2 Row crops 
We can describe a row crop with a two-dimensional model by assuming that the plants are densely 
packed in the row. Our second dimension, x, is horizontal, orthogonal to the row. The root density at 
a specific point can be denoted Lz,x, where we choose origo so L0,0 is the root density in the middle of 
the row, see Figure 2. 

 
Figure 2. A row crop placed in (z,x) = (0,0). Other crops in the row are “behind” the plant. Other rows would be placed 
along the x-axis. 

We then define the following root distribution:  

𝐿𝐿𝑧𝑧,𝑥𝑥 = 𝐿𝐿0,0𝑒𝑒−𝑎𝑎𝑧𝑧𝑧𝑧𝑒𝑒−𝑎𝑎𝑥𝑥𝑥𝑥 (10.2.14) 

where az and ax control the density decrease along the z-axis and x-axis respectively (i.e. in the two 
dimensions). 

2.1 Finding the parameters 
To find the parameters az, ax

 and L0,0, we assume as before that the root depth and root mass is 
known, and now additionally that the radius of the horizontal extension of the roots, wc, is known. 
We define the total root zone depth, dc, to be the depth right below the root (x = 0) where the root 
density is Lm. As x = 0 is the place where eq. (10.2.14) predicts the highest density, the average root 
density at the depth will be well below Lm. Similarly, we define the radius wc as the horizontal 
distance from the row, where the root density at the surface (z=0) equals Lm: 



𝐿𝐿𝑚𝑚 = 𝐿𝐿𝑑𝑑𝑐𝑐,0 = 𝐿𝐿0,𝑤𝑤𝑐𝑐  (10.2.15) 

In the root module, wc = dc∙MaxWidth/MaxPen. MaxWidth and MaxPen are both parameters under 
RootSystem, describing the maximum width and penetration of the root system, respectively. If 
MaxWidth is not defined, it is set equal to MaxPen and wc = dc, e.g. the horizontal and vertical extent 
of the root zone is identical. 

The total root length on one side of the row (lR), which we assume is known from our crop model, is 
the integral of the root density over the half plane, as shown in eq. (10.2.16): 

𝑙𝑙𝑅𝑅 = � � 𝐿𝐿𝑧𝑧,𝑥𝑥𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑
∞

0

∞

0
 

                           =  � � 𝐿𝐿0,0𝑒𝑒−𝑎𝑎𝑧𝑧𝑧𝑧𝑒𝑒−𝑎𝑎𝑥𝑥𝑥𝑥𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑
∞

0

∞

0
 

  =
𝐿𝐿0,0

𝑎𝑎𝑥𝑥𝑎𝑎𝑧𝑧
 

(10.2.16) 

 

L0,0 in eq. (10.2.16) can be isolated and the resulting expression can be introduced in eq. (10.2.14): 

𝐿𝐿𝑧𝑧,𝑥𝑥 = 𝑙𝑙𝑅𝑅 𝑎𝑎𝑧𝑧𝑎𝑎𝑥𝑥𝑒𝑒−𝑎𝑎𝑧𝑧𝑧𝑧𝑒𝑒−𝑎𝑎𝑥𝑥𝑥𝑥 (10.2.17) 

 
Now, Lm in eq. (10.2.15) can be rewritten as: 

𝐿𝐿𝑚𝑚 = 𝑙𝑙𝑅𝑅𝑎𝑎𝑧𝑧𝑎𝑎𝑥𝑥𝑒𝑒−𝑎𝑎𝑧𝑧𝑑𝑑𝑐𝑐  (10.2.18) 

𝐿𝐿𝑚𝑚 = 𝑙𝑙𝑅𝑅𝑎𝑎𝑧𝑧𝑎𝑎𝑥𝑥𝑒𝑒−𝑎𝑎𝑥𝑥𝑤𝑤𝑐𝑐  (10.2.19) 

Thus, 𝑒𝑒−𝑎𝑎𝑧𝑧𝑑𝑑𝑐𝑐 = 𝑒𝑒−𝑎𝑎𝑥𝑥𝑤𝑤𝑐𝑐  or  

𝑎𝑎𝑥𝑥 =
𝑑𝑑𝑐𝑐
𝑤𝑤𝑐𝑐

𝑎𝑎𝑧𝑧 (10.2.20) 

 

By inserting eq. (10.2.20) in (10.2. 19), Lm is expressed as:  

𝐿𝐿𝑚𝑚 = 𝑙𝑙𝑅𝑅𝑎𝑎𝑧𝑧
𝑑𝑑𝑐𝑐
𝑤𝑤𝑐𝑐

𝑎𝑎𝑧𝑧𝑒𝑒−𝑎𝑎𝑧𝑧𝑑𝑑 (10.2.21) 

 

We now introduce the variable Q: 

𝑄𝑄 = 𝑎𝑎𝑧𝑧𝑑𝑑𝑐𝑐 (10.2.22) 
and isolate the known values on the right side. This results in eq. (10.2.23):  

𝑄𝑄2𝑒𝑒𝑄𝑄 = 𝐿𝐿𝑚𝑚
𝑑𝑑𝑐𝑐 ∙ 𝑤𝑤𝑐𝑐
𝑙𝑙𝑅𝑅

 (10.2.23) 

 

The left-hand side expression of eq. (10.2.23) is illustrated in Figure 3. 
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Figure 3. Q2∙eQ as function of Q.it should be noted from eq. (10.3.22) that the Q is always negative in our case. 

2.2 Numeric solution to Q 
First, the function is divided into monotonic intervals by finding the derivative:  

𝑑𝑑(𝑄𝑄2𝑒𝑒𝑄𝑄)
𝑑𝑑𝑄𝑄

= 2𝑄𝑄𝑒𝑒𝑄𝑄 + 𝑄𝑄2𝑒𝑒𝑄𝑄 (10.2.24) 

The equation 

2𝑄𝑄𝑒𝑒𝑄𝑄 + 𝑄𝑄2𝑒𝑒𝑄𝑄 = 0 (10.2.25) 

has two solutions, Q = 0 and Q = -2. The expression Q2eQ is increasing below -2, decreasing between 
-2 and 0, and increasing above 0. Thus, Q = 0 is a local (and in this case also global) minimum and Q 
=-2 is a local maximum. We are now interested in positive values for Q, as they correspond to 
negative values for az and the simplification in eq. (10.2.16) is only valid if az > 0.  

Since limQ->-∞Q2eQ= 0, there is a single negative solution when 𝐿𝐿𝑚𝑚
𝑑𝑑𝑐𝑐∙𝑤𝑤𝑐𝑐
𝑙𝑙𝑅𝑅

 is exactly at the top-point 

(22e-2), two when it is smaller (it is never negative), and none when it is larger. The latter situation 
corresponds to the case where there is insufficient root lR to satisfy the minimal root density Lm, 
within the given root zone dc∙wc. 

Both negative solutions are valid, but represent different distributions: 

• The solution for Q < -2 represents a large az (and thus also ax) parameter. From eq. (10.2.16) 
it can be seen that this also means that L0,0 is large. Thus, the solution corresponds to a root 
zone with a high density near the center that decreases rapidly to Lm near the edge og the 
root zone, and continues to decrease, so there is only a small contribution to the total root 
length from outside the root zone. 

• The solution for Q > -2 (and thus small values of az, ax, and L0,0) corresponds to a low root 
density near the center that decreases slowly, and thus results in a larger contribution to the 
total root length from outside the root zone.  



As the total root length increases, pressing Q towards 0 or -∞, the difference between the solutions 
grows. When there are just enough roots to satisfy the constraints at Q = -2, the two solutions 
converge into one. As the roots should preferably stay within the root zone, we choose the solution 
for Q ≤ -2. We can find Q numerically, using Newton’s method and an initial guess of -3. From that, 
az can be calculated from eq. (10.2.22), ax from (10.2.20) and L0,0 from eq. (10.2.16). 

2.3 Multiple rows 
If the rows are close enough, the root systems will overlap, as shown in Figure 4. 

If R is the distance between rows, and we assume an infinite number of identical rows, this can be 
expressed by the equation:  

𝐿𝐿𝑧𝑧,𝑥𝑥
∗ = �� �𝐿𝐿𝑧𝑧,𝑥𝑥+𝑖𝑖𝑅𝑅 + 𝐿𝐿𝑧𝑧,𝑅𝑅+𝑖𝑖𝑅𝑅−𝑥𝑥� 𝑙𝑙𝑖𝑖 𝑑𝑑 < 𝑅𝑅/2

∞

𝑖𝑖=0
0                                                  𝑙𝑙𝑖𝑖 𝑑𝑑 ≥ 𝑅𝑅/2

 (10.2.26) 

 

Using eq. (10.2.14) and the rules for geometric series, the first case in eq. (10.2.26) can be re-written 
as 

� �𝐿𝐿𝑧𝑧,𝑥𝑥+𝑖𝑖𝑅𝑅 + 𝐿𝐿𝑧𝑧,𝑅𝑅+𝑖𝑖𝑅𝑅−𝑥𝑥�
∞

𝑖𝑖=0
   

= 𝐿𝐿0,0𝑒𝑒−𝑎𝑎𝑧𝑧𝑧𝑧� �𝑒𝑒−𝑎𝑎𝑥𝑥(𝑥𝑥+𝑖𝑖𝑅𝑅) + 𝑒𝑒−𝑎𝑎𝑥𝑥(𝑅𝑅+𝑖𝑖𝑅𝑅−𝑥𝑥)�
∞

𝑖𝑖=0
  

                 = 𝐿𝐿0,0𝑒𝑒−𝑎𝑎𝑧𝑧𝑧𝑧 �𝑒𝑒−𝑎𝑎𝑥𝑥𝑥𝑥� 𝑒𝑒−𝑎𝑎𝑥𝑥𝑖𝑖𝑅𝑅 + 𝑒𝑒−𝑎𝑎𝑥𝑥(𝑅𝑅−𝑥𝑥) � 𝑒𝑒−𝑎𝑎𝑥𝑥𝑖𝑖𝑅𝑅
∞

𝑖𝑖=0

∞

𝑖𝑖=0
� (10.2.27) 

= 𝐿𝐿0,0𝑒𝑒−𝑎𝑎𝑧𝑧𝑧𝑧�𝑒𝑒−𝑎𝑎𝑥𝑥𝑥𝑥 + 𝑒𝑒−𝑎𝑎𝑥𝑥(𝑅𝑅−𝑥𝑥)�� 𝑒𝑒−𝑎𝑎𝑥𝑥𝑖𝑖𝑅𝑅
∞

𝑖𝑖=0
  

= 𝐿𝐿0,0𝑒𝑒−𝑎𝑎𝑧𝑧𝑧𝑧�𝑒𝑒−𝑎𝑎𝑥𝑥𝑥𝑥 + 𝑒𝑒−𝑎𝑎𝑥𝑥(𝑅𝑅−𝑥𝑥)�� ��
1
𝑒𝑒
�
𝑎𝑎𝑥𝑥𝑅𝑅
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𝑖𝑖∞

𝑖𝑖=0
  

= 𝐿𝐿0,0𝑒𝑒−𝑎𝑎𝑧𝑧𝑧𝑧�𝑒𝑒−𝑎𝑎𝑥𝑥𝑥𝑥 + 𝑒𝑒−𝑎𝑎𝑥𝑥(𝑅𝑅−𝑥𝑥)�
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Figure 4. The x-axis represents the relative distance from a row to the midpoint between that row and the row to its 
right. The y-axis is the root density for roots originating in a specific row. The top line represents the roots from the row 
itself. The next line represents the roots from the row to the right. The last line represents the roots from the row to the 
left. In theory, all the rows on the field will contribute some roots to the interval. The root density in the interval will be 
the sum of all the individual contributions.  

2.4 Mapping between the models 
We would like to retain our original distribution when ignoring the x-dimension. We could not do 
that when looking only at the root system for a single row, as it is indefinitely wide and thus has an 
average density of zero. However, if we look at the roots of a single row, we get:  

𝐿𝐿𝑧𝑧 =
2∫ 𝐿𝐿𝑧𝑧,𝑥𝑥  𝑑𝑑𝑑𝑑∞

0
𝑅𝑅

 (10.2.28) 

 

We multiply by two, as we assume that two sides of the rows are identical. By integrating to ∞ 
rather than just to R/2, we do include roots from outside the row. However, because the system has 
an infinite number of identical rows, the amount of roots from the crop outside its own row is 
exactly the same as the amount of roots for other rows inside the row we are examining.  

Inserting eq. (10.2.14) and (10.2.1) in (10.2.28), results in the following equation: 

𝐿𝐿0𝑒𝑒−𝑎𝑎𝑧𝑧 =
2
𝑅𝑅
� 𝐿𝐿0,0𝑒𝑒−𝑎𝑎𝑧𝑧𝑧𝑧𝑒𝑒−𝑎𝑎𝑥𝑥𝑥𝑥𝑑𝑑𝑑𝑑
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0
 

=
2𝐿𝐿0,0𝑒𝑒−𝑎𝑎𝑧𝑧𝑧𝑧

𝑅𝑅
� 𝑒𝑒−𝑎𝑎𝑥𝑥𝑥𝑥𝑑𝑑𝑑𝑑
∞

0
 

=
2𝐿𝐿0,0𝑒𝑒−𝑎𝑎𝑧𝑧𝑧𝑧

𝑅𝑅
∙ �

0− 1
−𝑎𝑎𝑥𝑥

� 

=
2𝐿𝐿0,0𝑒𝑒−𝑎𝑎𝑧𝑧𝑧𝑧

𝑅𝑅 ∙ 𝑎𝑎𝑥𝑥
 

(10.2.29) 

 

The relationship between the parameters in 1 and 2 dimensions are therefore as follows: 



𝑎𝑎𝑧𝑧 = 𝑎𝑎 (10.2.30) 

𝐿𝐿0,0 =  
1
2
𝑎𝑎𝑥𝑥𝑅𝑅𝐿𝐿0 

(10.2.31) 

𝐿𝐿0 =
2𝐿𝐿0,0

𝑎𝑎𝑥𝑥𝑅𝑅
 

(10.2.32) 

These equations are used to switch between the one- and two-dimensional descriptions.  

3 Parameters 
Table 10.2.1. List of symbols 

Symbol Unit Description 
a m-1 Root density distribution parameter (vertical, 1D) 
az m-1 Vertical root density distribution parameter 
ax m-1 Horizontal root density distribution parameter 
da m Actual root depth, limited by soil and crop constraints 
dc m Root depth 
dc,pot m Crop potential root depth 
ds m Soil maximum root depth 
k*  Soil root limit factor 
lr m m-2  Total root length per area 
lR m m-1 Total root length per length of row on one side 
L0 m m-3 Average root density at soil surface 
L0,0 m m-3 Root density in row at the soil surface  
Lm m m-3 Minimal root density 
Lz m m-3 Root density at soil depth z 
Lz

* m m-3 Soil limited root density at soil depth z 
Lz,x m m-3 Root density at soil depth z and distance x from row 
L*

z,x m m-3 Root density from multiple rows 
Mr m m-2 Total root dry matter 
Q  Substitution variable 
R m Distance between rows 
Sr m kg-1 Specific root length 
W  Lambert-W-function 
wc m Extension of roots in the horizontal direction, radius 
x m Horizontal distance from row 
z m Soil depth 

 



Table 10.2.2. Related Parameter names in Daisy. 

Name and explanation Model (in Daisy) Parameter name  
(Daisy reference manual) 

Default Default unit 

dc,pot Maximum penetration 
depth based on crop 

RootSystem MaxPen 
 

Default = 100 [cm] 

MaxWidth  Maximum horizontal 
distance of roots from 
plant. 

RootSystem MaxWidth 
 

Optional parameter, 
default = MaxPen 

[cm] 

ds The half-saturation 
constant for bio-
incorporation, Eq. (9.1). 

Soil MaxRootingDepth Optional parameter [cm] 

Sr Specific root length Rootdens SpRtLength Default = 100  [m g-1] 
Lm Root density at 

(potential) penetration 
depht 

GPD1 
GPD2 

DensRtTip Default = 0.1 [cm cm-3] 

 Ignore cells with less 
than this root density. 

GPD1 
GPD2 

DensIgnore Optional parameter, by 
default the same as 
DensRtTip 

[cm cm-3] 

 Position of plant row on 
x-axis 

action, sow_base row_position parameter (default 0), 
equal to no rows. But if 
row_width is > 0, e.g. 
there are rows, the 0 will 
be 0 on the x-axis.  

[cm] 

R Distance between rows 
of crops 

action, sow_base row_width default = 0, indicating 
equal spreading of seed 
over the area (no rows) 

[cm] 
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