Appendix 10.1

Calculation of Day Length

The code for calculation of day length is found in "astronomy.C".

The TimeYearFraction (Julian day/days in a year) is calculated and transformed to position on a circle as:

$$t = 2 \cdot \pi \cdot TimeYearFraction \tag{10.1.1}$$

The declination, *Dec*, is calculated as:

$$Dec = (0.3964 - 22.97 \cdot cos(t) + 3.631 \cdot sin(t) - 0.03885 \cdot cos(2 t) + 0.03838 \cdot sin(2 t) - 0.15870 \cdot cos(3 t) + 0.07659 + sin(3 t) - 0.01021 \cdot cos(4 t))$$
(10.1.1)

The declination is used to calculate tangent to the angle of the sun, *Mytan*, as:

$$Mytan = -tan (\pi / 180.0 * Dec) * tan (\pi / 180.0 * latitude)$$
 (10.1.2)

$$Mytan^* = \begin{cases} -1.0 & for & Mytan \le -1.0\\ Mytan & for - 1 < Mytan < 1.0\\ 1.0 & for & Mytan \ge 1.0 \end{cases}$$
(10.1.3)

Daylength, dl, is now calculated as

$$dl = \begin{cases} T & \text{if } T \ge 0 \\ T + 24 & \text{if } T < 0 \end{cases}$$
 (10.1.4)

where

$$T = \left(\frac{24}{\pi} \cdot a\cos\left(Mytan^*\right)\right) \tag{10.1.5}$$

Original text from	None (astronomy.C)	
Updated by	date	For Daisy version
Styczen, M	2024-11-06	6.47