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Chapter 1

Water movement

The soil water, θ is in the model divided into 3 parts:

θ = θ1 + θ2 + θ3 (1.1)

The third domain is made for describing the macroporous �ow whereas the
primary and secondary domain are representing the water in the soil matrix

θm = θ1 + θ2 (1.2)

where θm is volumetric water content in the matrix domain. The division of
the matrix domain into 2 subdomains is solely made for a better description of
solute movement - see more in chapter 2.

1.1 Richards' Equation

The water �ow in porous media can be described with the formula of Richard.
The equation is derived here. The water �ux density vector, qm can be calcu-
lated by the Darcy�s law. For a two-dimensional vertical transect it yields:

qm = −K(ψ)∇(ψ + z) (1.3)

where K(ψ) is the hydraulic conductivity tensor, ψ is the potential head. The
x-axis is chosen in horizontal direction and the z-axis is positive upwards. The
conductivity tensor can be expressed as:

K =

[
Kxx Kxz

Kzx Kzz

]
(1.4)

For a model with rectangular cells we have chosen that the principal directions
of the anisotropic medium are parallel to the x- and z-axis, i.e.

K =

[
Kxx 0

0 Kzz

]
(1.5)
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The mass balance for the system gives

∂θm
∂t

= −∇ · qm − Γwm (1.6)

where θm is the volumetric water content and Γwm is the sink term for water.
The partial di�erential equation can be developed by combining Darcy�s law,
equation (1.3) and the mass balance, equation (1.6), thus

∂θm
∂t

= ∇ · (K(ψ)∇(ψ + z))− Γwm (1.7)

This is known as Richard's equation. For the modeling is assumed that the
soil-water retention is without hysteresis, i.e. there is a unique relation between
the matrix pressure potential and the water content.

To solve Richard's equation it is necessary to specify initial and boundary
conditions. The boundary conditions specify a combination of ψ and its deriva-
tive on the boundary. Furthermore it is possible to use di�erent forms of �ux
(Neumann) and predescribed pressure (Dirichlet) boundary conditions. The
problem to be solved for determining the water movement can be summarized
to 

∂θm
∂t = ∇ · (K(ψ)∇(ψ + z))− Γwm in Ω

n̄ · (K(ψ)∇(ψ + z)) = −qm on ∂ΩN

ψ = ψ0 on ∂ΩD
(1.8)

where n̄ is the outward unit normal, and qm is the magnitude of the outward
�ow from the domain. ψ0 is the predescribed pressure at the boundary. Ω is
the soil domain. ∂ΩN and ∂ΩD are part of the boundary of Ω with Neumann
and Dirichlet boundaries, respectively such that ∂Ω = ∂ΩN ∪ ∂ΩD. Each of
∂ΩN and ∂ΩD are not necessarily one continuous curve piece. A special case
of the Neumann boundary conditions is often applied for the lower boundary
condition, viz. it is assumed that the �ow it is only driven by gravity (gravity
boundary condition), i.e. ∂ψ/∂x = ∂ψ/∂z = 0 which gives

qm = n̄ ·
[

0
Kzz

]
(1.9)

Another often used boundary condition is the seepage boundary condition for
atmospheric boundaries. If a seepage face does not develop, the boundary acts
as no �ow. If a seepage face occurs we have a Dirichlet boundary condition
with ψ = 0 and allow water to �ow out of the domain. The condition can for
instance be applied in connection with estuaries or streams.

1.2 Macropore �ow

In the concept all macropores are vertical oriented. The macropore (tertiary)
domain in the model contains a number of user speci�ed macropore clases. In
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a macropores class all the macropores have the same physical properties such
as length. Each of the classes are characterized by distribution in the horizon-
tal plane, radius of the pores and depth where the macropores start and ends.
Also the pressures where the water starts and stops moving from the matrix to
the macropore domain must be known. The macropores are also characterized
by resistance for transferring water from a �lled macropore to the matrix do-
main. The macropores can either end in the soil matrix or in a drain. When
the macropores ends in a drain, matrix water which �ows intro the macrop-
ore is instantaneously moved to the drain, and as consequence can macropores
connected with drains newer be �lled, and water can not be moved from the
macropore to the matrix. The pressures where the water starts and stops mov-
ing from the matrix to the macropore domain must be known and the values
are common for all the classes.

1.2.1 Macropore interaction with matrix water

The condition for macroporous �ow to initiate and water move from the matrix
to macropores in a macropores class is that the matrix pressure exceeds a certain
value ψinitiate.

ψ ≥ ψinitiate (1.10)

When water is transferred from the matrix to the macroporous domain, the
water is instantaneously moved to the top of the current water level in the
macropores. If the whole macropore is empty, the incoming water is moved
instantaneous to the bottom of the macropore or alternatively to the drain (if
the macropore ends in a drain).

The water transfer from the matrix domain to the macroporous domain
terminates if the matrix pressure is below a certain level, i.e.

ψ < ψterminate (1.11)

In a location where the macropore class is �lled with water, water is transferred
from the macropore to the matrix domain if

ψ3, c > ψ (1.12)

where ψ3, c is the pressure potential in the macropore.

The quanti�cation of the water movement toward a macropore is based on
a relatively simple approach, very similar to theory of water the movement in
a con�ned aquifer towards a well. For a con�ned aquifer of thickness D the
stationary solution for water movement towards a well is

Q =
2πKD(swell − s)

ln( r
rwell

)
(1.13)
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where K is the (saturated) hydraulic conductivity, rwell is the radius of the well,
swell is the drawdown at the wall of well and s is the drawdown at the distance
r from the center of the well.

If the macropores are equidistant placed, the density in the horizontal plane
Mc can be approximated as:

Mc ≈
1

πr2
c, mean

(1.14)

where 2rc, mean is the mean distance between the macropores.

In a small time step, the �ow towards a macropore is considered as stationary
and at the distance rc, mean, the pressure in the current time step is considered
as una�ected of the macropore, i.e. no pressure drawdown. Thus the �ow to a
piece of a single macropore with the height, ∆z can be approximated as

Qc, macro =
2πK(ψ)∆z(ψ − ψ3, c)

ln(
rc, mean

rc, macro
)

(1.15)

where ψ3, c is the pressure potential in the macropores and rc, macro is the radius
of the macropore and K(ψ) is the hydraulic conductivity. Preventing that the
hydraulic conductivity is very high in fractured media the K(ψ) is computed as

K(ψ) = min(Kxx(ψ),Kxx(ψinitiate)) = Kxx(min(ψ,ψinitiate)) (1.16)

where Kxx is the conductivity in the x-direction (see equation (1.5)). It is
assumed that the �ow towards the macropores is horizontal. Using equation
(1.14) the sink term can be calculated

Γwm, c =
McQc, macro

∆z
=
−4πMcKxx(ψ)(ψ − ψ3, c)

ln(πMcr2
c, macro)

(1.17)

For �ow from the macropore domain into the matrix domain are the cal-
culations made in a similar manner, but instead of using the conductivity is a
resistance, Rc, macro for �ow out from the macropores introduced.

Γwm, c =
−4πMc(ψ − ψ3, c)

Rc, macro ln(πMcr2
c, macro)

(1.18)

The pressure at a given position in the macropore depends on the water level
in the macropore

ψ3, c = zc, macro − z (1.19)

where zc, macro is the water level en the macropore. If the macropore is empty
is zc, macro = zc, bottom where zc, bottom is the z-coordinate of the bottom of the
macropore. As a consequence of equation (1.19), we have for macropores which
ends in drains:

ψ3, c = zdrain − z (1.20)
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where zdrain is the z-coordinate of the drain.

All the considerations above are for the transfer of water between a macrop-
ore class and the matrix. To calculate the total transfer between the macropores
and the matrix it is necessary to sum up the contributions from each of the
macropore classes. Thus the sink the macropores contributes to in the maxtrix
�ow is

Γwm, macro =

NC∑
c=1

Γwm, c (1.21)

where NC is the number of macropore classes.

1.2.2 Macropore interaction with surface water

When the surface is ponded, water can directly enter the macropores without
�rst entering the soil matrix. The rate is calculated very roughly and based on
Poisseuilles law (e.g. Hillel, 1998). In the assumption made here only gravity
drives the �ow. The vertical �ow in a macropore can be computed as:

Qin�ltration =
πr4

c, macroρwg(l +Hpond)

8lµ
≈
πρwgr

4
c, macro

8µ
(1.22)

where µ is the dynamic viscosity, ρw the density of water, g the gravitational
acceleration, l the distance from the surface to the water level in the macropore
class (or the bottom of the macropore if it is empty) and Hpond is the ponding
depth. The in�ltration rate into the macropore class is:

ic, macro =
πMcρwgr

4
c, macro

8µ
(1.23)

The total in�ltration into macropores is the sum of the in�ltration into the
di�erent macropore classes

imacro =

NC∑
c=1

ic, macro (1.24)

In the numerical model in a timestep of size ∆t the implemented routine allows
no more water for in�ltration than present at the surface on the start of the
timestep. Furthermore there can not in�ltrate more water into a macropore
class as there is space for in the start of the timestep. If all water is in�ltrated
in the timestep, the water is distributed between the classes proportional to the
area density, Mc of the classes.

1.3 Finite Volume Method

1.3.1 Mesh

In Daisy2D, the domain, Ω is divided into N non-overlapping rectangles (Figure
1.1).
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Figure 1.1: Example of grid consisting of rectangular cells.

The cells are denoted Qi where i = 1, 2, · · · , N . |Qi| denotes the area of
Qi, and ∂Qi is the boundary of Qi i.e. the edges (or faces) of Qi. All internal
edges eij are labeled by indices, i and j of the adjacent cells that shares face.
The grid is constructed such that only whole faces are shared (eij = Qi ∩Qj).
The length of eij is |eij | and the unit normal vector pointing from Qiinto Qj
and orthogonal to eij is denoted n̄ij . σi contains cell indices of cells sharing
faces with cell i. σ′i contain indices of cell faces of cell i which are placed on ∂Ω,
i.e. it is not shared with another cell. σ′i is divided into two subsets, σ′Di and
σ′Ni of boundary cell faces with a Dirichlet and Neumann boundary condition,
respectively.

1.3.2 Cell mass-balances

Richards equation is integrated over control volume (here a cell), Qi. By apply-
ing the divergence theorem by Green-Gauss, we obtain∫

Qi

∂θm
∂t

dΩ =

∫
∂Qi

(K(ψ)∇(ψ + z)) · n̄dl −
∫
Qi

ΓwmdΩ (1.25)
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where n̄ is the outwarded unit normal and ∂Qi the boundary of Qi. The cell
averages of θm and ψ are denoted θi and ψi. θi and ψi, i = 1, 2, · · ·N where N
is the number of cells that are collected in the vectors θ and ψ. Discretization
of equation (1.25) based on a grid consisting of quadrilaterals yield

|Qi|
(
dθm
dt

)
i

=
∑
j∈σi

Dij(ψ) +
∑
j∈σi

Gij(ψ) +
∑
j′∈σ′i

Bij′(ψ)− Si(ψ) (1.26)

where:

• Dij(ψ) describe the di�usive transport between internal borders

• Gij(ψ) describe the gravitational transport between internal boundaries

• Bij′(ψ) describe �ux for external boundaries j′ ∈ σ′i

• Si(ψ) is the integrated sink term (point and area distributed sinks) in the
cell.

The di�usive transport from cell i to cell j can be calculated as

Dij(ψ) = |eij |(K(ψ) · (∇ψ)ij) · n̄ij (1.27)

For evaluating equation (1.27) it is necessary to estimate the gradient (∇ψ)ij .
The gravitational transport from cell i to cell j can be calculated as

Gij(ψ) = |eij |(K(ψ) · ([0 1]T )) · n̄ij (1.28)

The boundary �ux term is split into the contribution from boundaries with
Neumann and Dirichlet condition respectively:∑

j′∈σ′i

Bij′(ψ) =
∑

j′∈σ′Ni

BNij′(ψ) +
∑

j′∈σ′Di

BDij′(ψ) (1.29)

For the boundaries with Neumann conditions we have

BNij′(ψ) = −qm,ij′ |eij′ | (1.30)

where qm,ij′ is the size of the Darcy �ux, perpendicular to the cell face and pos-
itive for �ux out from cell i. The easiest way to implement Dirichlet boundary
conditions is simply to force ψi to the value that ψ has on the face with Dirichlet
conditions. Con�icts can arise if cell i has more than one face with a Dirichlet
condition. Instead, the Dirichlet boundary condition is implemented as if the
midpoint of the Dirichlet face was a neighbor cell. Similar to an interior cell
face, a di�usive and a gravitational contribution can be calculated:

BDij′(ψ) = DD
ij′(ψ) +GDij′(ψ) (1.31)
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where

DD
ij′(ψ) = |eij′ |(K(ψi) · (∇ψ)ij′) · n̄ij′ (1.32)

GDij′(ψ) = |eij′ |(K(ψi) · ([0 1]T )) · n̄ij′ (1.33)

where the pressure associated with cell i has been used for calculating the hy-
draulic conductivity. The sink term used in equation (1.6) can be divided into
two parts

Γw1 = Γwma + Γwmpδ(xp − x)δ(zp − z) (1.34)

where Γwma is the contribution from a area distributed sink and Γwma is the
contribution from a point sink. (xp, zp) are the coordinates of the point sink
which shall be placed in the interior of a cell(not on the cell faces). δ is the
Dirac delta function. Thus, the contribution from the sink terms to a cell yields

Si(ψ) = Γwma|Qi|+ Γwmp (1.35)

Area distributed sinks are typically extraction from roots or (in Daisy2D) water
�ow between the soil matrix and macro pore domain. The point sinks can be
tile drains or drip irrigation systems (point sources). Both Γwma and Γwmp can
be dependent on the solution (ψ).

1.3.3 Rectangular cells

For the situation with a mesh consisting of rectangular cells, only matrix pres-
sure in the four neighbor cells (see �gure 1.2) are applied for calculating the
�uxes through the faces of the cell (�ve point stencil). In the present section we
will only evaluate the gradient for the "eastern" cell face of cell i. The theory
can easily be applied for the 3 remaining directions. The distances necessary
for evaluating the �ux from a cell to the cell placed east of the cell are shown
in �gure 1.3.

The value of ψ in the midpoint of the eastern cell (ψE) can be expressed by
a Taylor expansion of the value of ψ at the midpoint of the cell face:

ψE = ψ(x+ δx+) =

m∑
k=0

1

k!

(
dkψ

dxk

)
f

(δx+)k +R+ (1.36)

wherem is the order of the Taylor expansion and R+ is the Lagrange remainder.
Similar can ψi be computed

ψi = ψ(x− δx−) =

m∑
k=0

1

k!

(
dkψ

dxk

)
f

(−δx−)k +R− (1.37)

It can be assumed that R+ − (−1)m+1R− ≈ 0. Thus if a Taylor expansion of
�rst order (m = 1) is chosen we get(

dψ

dx

)
f

(δx+ + δx−) ≈ ψE − ψi (1.38)
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Figure 1.2: Cell i and the neighbor cells it share faces with.

If a higher order Taylor expansion is chosen we get(
dψ

dx

)
f

(δx+ + δx−) ≈ ψE − ψi − εEi (1.39)

where the correction term can be calculated as

εEi ≈
m∑
k=2

1

k!

(
dkψ

dxk

)
f

[
(δx+)k − (−δx−)k

]
(1.40)

It can be seen that a second order precision is obtained with m = 1 and
δx+ = δx−. m = 1 is chosen for the relative simple model for rectangular
cells. The width and height of cell i are denoted (∆x)i and (∆z)i respectively,

thus δx− = (∆x)i
2 , δx+ = (∆x)E

2 and |eiE | = (∆z)i = (∆z)E . The outwarded
unit normal, n̄iE = [1 0]T . By applying equation (1.27), the di�usive transport
through the cell eastern face is:

DiE(ψ) = (Kxx)iE
2(∆z)i

(∆x)E + (∆x)i
(φE − φi) (1.41)

The gravitational transport from cell i to cell E is:

GiE(ψ) = 0 (1.42)

If the eastern cell face of cell i belongs to the boundary of Ω (no eastern neigh-
bor), BiE′ shall be calculated. If the cell face has a Neumann boundary condition
we have

BNiE′(ψ) = −qiE′(∆z)i (1.43)
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Figure 1.3: Distances used for calculation of �ux between cell i and its "eastern"
neighbor.
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where qiE′ is the magnitude of the �ux transported out from through the cell
face. If the cell face have a Dirichlet boundary condition:

DD
iE′(ψ) = (Kxx)i

2(∆z)i
(∆x)i

(ψE′ − ψi) (1.44)

where ψE′ is the value of ψ in the midpoint on the eastern cell face of cell i.
The gravitational part gives:

GDiE′(ψ) = 0 (1.45)

1.3.4 Conductivity at cell faces

The conductivity at the cell faces between adjacent cells (as used in equations
(1.27)) are in Daisy calculated by either the arithmetic, geometric or harmonic
mean. For steady state �ow speaks physical arguments for applying the har-
monic mean:

1

Kij
=

1

2

[
1

K(ψi)
+

1

K(ψj)

]
(1.46)

Simulation have shown that using the harmonic average can have the e�ect that
water practically not can be transported in some cases with sharp gradients in
the pressure potentials which can occurs in situations with evaporation and
layered soil. Of that reason is the arithmetic mean chosen as default:

Kij =
1

2
[K(ψi) +K(ψj)] (1.47)

1.3.5 Upper boundary condition

The upper boundary condition describes how much of the applied water and
surface water that in�ltrates into the soil. For instance if the rate of the ap-
plied water exceeds the amount of water that can in�ltrate into the soil, (the
in�ltrability) water is stored on the surface.

In the start of each of the iterations, within the time step, the in�ltrability
is calculated using Darcy's law (based on the pressure at surface in the last
time step and the pressure in the surface cell.) If the amount of available water
(surface water + applied water in the current time step) exceeds the amount
of water that can in�ltrate into the soil as calculated with the in�ltrability,
a Dirichlet (pressure) boundary condition is applied. If the amount of water
which can in�ltrate into the soil, as calculated with the in�ltrability exceeds the
amount of available water then a Neumann (�ux) boundary condition is applied.
The upper boundary can at a given time consists of parts with Dirichlet and
parts with Neumann condition.

Surface �ow

In order to take care of the surface water in simulations with a rectangular soil
domain, a very simple surface �ow module is developed.
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In Daisy2D the surface �ow model is executed after each time step. In a
later version more physical based model can be included, for instance a solver of
the Saint-Venant equations (see for example Chow et al., 1988). In the present
0D model is the surface water distributed so the resulting water level is equal
for the whole surface. The water over a prede�ned level (detention storage) is
removed.

1.3.6 Aquitard boundary condition

As in the existing one-dimensional Daisy it is possible to simulate the existence
of an aquitard below the lower boundary of the soil domain. The aquitard is
described by a thickness, a hydraulic conductivity and the pressure potential in
the aquifer just below the bottom of the aquitard.

In start of the iteration loop, inside each time step, the �ow across the lower
boundary is estimated using Darcy�s law where the pressure in the boundary
cells and the properties of the aquitard are required. The aquitard is then
implemented as a Neumann boundary condition.

1.3.7 Tile drains

It is possible to simulate a (user de�ned) number of tile drains. Tile drains
removes water when the matrix pressure potential in the soil around the drain
is positive. The actual pressure in a drain pipe depends on position in the drain
system, the hydraulic radius, etc, etc. An often applied simpli�cation codes for
variably saturated �ow is to regard the pressure in the drain pipe as atmospheric.
When the soil in the drain point is unsaturated (ψ < 0) the solution corresponds
to the solution for an undrained soil. If the soil is saturated (ψ > 0) the drains
removes water from the soil matrix hence ψ = 0.

In the numerical model, the drain pipe is described as a point. The drain
points shall be placed in the interior of a cell and cannot be placed at cell edges.

For obtaining a numerical stable solution it is in the beginning of a new
iteration in the time step tested if the mean value of the matrix pressure in the
drain cell and its eastern and western neighbors (if they exists) exceeds 0. If
the mean value is positive the pressure in the drain cell is forced to zero. After
each time step a mass balance for each of the drain cells is made to calculate
the amount of drained water.

Test simulations show that the code both is able to turn on the drain when
the soil is getting wetter and turn of the drain when the soil is getting drier.
Figure 1.4 shows the results from a simulation with an aquitard boundary con-
dition and a drain. The upper boundary has a no �ux condition, thus the only
supply of water is through the aquitard. As it can be observed, the matrix
pressure potential in the drain is 0.
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Figure 1.4: Matrix pressure potential in a drained soil. The drain is indicated
with a dot. The lower boundary is formed by an aquitard condition.

1.3.8 Drip irrigation

1.3.9 Iteration scheme

Equation (1.26) describes how the matrix pressure potential in a given cell
depends on the matrix pressure potential in the neighboring cells. By assembling
equation (1.26) for i = 1, 2 · · ·N , the problem can be written as a ordinary
di�erential equation (ODE) on the form:

Q
dθ

dt
= E(ψ)ψ + F(ψ) (1.48)

where Q is a diagonal matrix with Q(i, i) = |Qi| and θm = θm(ψ). E(ψ)ψ is
the assembly of Dij and D

D
ij′ and Gij , G

D
ij′ , B

N
ij′ and Si are assembled in F(ψ).

The equation is solved in the time domain using the backward Euler method:

Q
θn+1,m+1 − θn

∆t
= E(ψn+1,m)ψn+1,m + F(ψn+1,m) (1.49)

In order to get rid of θm at iteration step m + 1, the mixed formulation by
Celia et al. (1990) is applied. In the mixed formulation, the water content at
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time step n+1 and iteration step m+1 is approximated by a Taylor expansion:

θn+1,m+1
m = θn+1,m

m +
dθm
dψ
|n+1,m (ψn+1,m+1 − ψn+1,m)

= θn+1,m
m + Cn+1,m(ψn+1,m+1 − ψn+1,m)

(1.50)

where C = ∂θm/∂ψ is the speci�c water capacity function. The time derivative
of θm can then be approximated as:

∂θm
∂t
≈ θn+1,m+1

m − θnm
∆t

=
θn+1,m+1
m − θn+1,m

m

∆t
+
θn+1,m
m − θnm

∆t

≈ Cn+1,mψ
n+1,m+1 − ψn+1,m

∆t
+
θn+1,m
m − θnm

∆t

(1.51)

Thus, the iterative scheme is(
1

∆t
QC(ψn+1,m)−E(ψn+1,m)

)
ψn+1,m+1 =

F(ψn+1,m) +
1

∆t
QC(ψn+1,m)ψn+1,m +

1

∆t
Q
(
θn − θn+1,m

)
(1.52)

where C is a diagonal matrix with C(i, i) = Ci.

In the MATLAB-prototype it is possible to choose simulations with a constantly
or dynamically size of the time steps, ∆t. For the last choice, the size of ∆t
depends on how di�cult it is to obtain a solution. A procedure based on same
principles is described in detail in Mollerup (2001). In Daisy2D the current
Daisy method will be applied.

1.3.10 Matrix solution technique

In the prototype, for solving the large matrix system of the type Ax = b (see
equation (1.52)), the MATLAB backslash operator (also called leftdivision) is
used. For description of the applied sparse matrix solver is refereed to Mollerup
(2001).

1.3.11 Hydraulic properties

In the Daisy2D it shall be possible to choose between the existing models for the
soil hydraulic properties in Daisy. In the prototype, the retention characteristics
are described with the model by van Genuchten (1980):

θm =

{
θr + θs−θr

[1+|αψ|n]m for ψ < 0

θs for ψ ≥ 0
(1.53)

where α, n and m are empirical parameters, θs and θr are the saturated and
the residual water content, respectively. By combination with the hydraulic
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conductivity model by Mualem (1976) and choosing m = 1−1/n, the hydraulic
conductivity can be calculated as

K = KsS
1/2
e [1− (1− S1/m

e )m]2 (1.54)

where Ks is the hydraulic conductivity at saturation and Se is the e�ective
saturation de�ned as

Se =
θm − θr
θs − θr

(1.55)

The retention model by van Genuchten has been adapted to a large class of
soils.

1.4 Veri�cation

The FVM-code is veri�ed by comparing solutions obtained by FVM with quasi-
analytical solutions for one-dimensional in�ltration by Philip.

1.4.1 In�ltration Model of Philip

Philip (1957b) showed that the in�ltration depth as function of time and satu-

ration can be written as a power series in t
1
2 . The coe�cients are then functions

of soil water content, θm. From the expression for the in�ltration depth, as func-
tion of water content and time, it is relatively easy to derive that the cumulative
in�ltration, also can be written as a power series in t

1
2 . The assumptions for the

theory, is a one-dimensional vertical �ow into a homogenous soil semi-in�nite
soil column, initially with uniform water content. The cumulative in�ltration is
expressed as

I =

+∞∑
n=1

Ant
n
2 (1.56)

where A1 = S is the often refereed sorptivity as de�ned in Philip (1969). The
coe�cients are found by solving a set of successive integro-di�erential equations.
One drawback of the power series theory is that the theory only describes the
in�ltration process well for short to intermediate times. The power series is
"practical convergent" for t < tgrav. Where tgrav is the characteristic time of
the in�ltration process

tgrav =

(
S

K0 −Ki

)2

(1.57)

where Ki = K(θi) and K0 = K(θ0) is the hydraulic conductivity corresponding
to the initial water content, θi and the water content at the soil surface, θ0. For
ponded conditions at the soil surface we have K0 = Ks.

The soil parametrization, which is applied for the test simulations, is the G.E.
silt loam (van Genuchten, 1980) where Ks = 4.96 cm/day, θs = 0.396 cm3/cm3,
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θr = 0.131 cm3/cm3, α = 0.00423 cm−1 and n = 2.06.

A constant size of ∆t= 1/60 day has been applied in the FVM test simula-
tions. For all simulations the initial condition is hi=-200 cm, corresponding to
θi = 0.332 cm3/cm3 is chosen.

Vertical falling-head in�ltration

Initially, it was shown that the power series solution can be applied for non-
saturated or just saturated conditions at the soil surface (see Philip, 1955,
1957b,a). Philip (1958) later expanded the theory to cover ponding situa-
tions with constant positive pressure at the soil surface. Later it was shown
(Mollerup and Hansen, 2007) that the power series solution also can be ap-
plied for a falling-head condition, where the ponding depth is dependent on the
amount of in�ltrated water. The pressure at the soil surface is then

H = H0 − I (1.58)

where H0=20 cm is the initial ponding depth.

In the FVM simulations, both the vertical and horizontal discretisation, ∆z =
∆x is 1 cm. The lower boundary was placed at z = 600 cm with a free drainage
(gravity �ow) condition. For the scenario is tgrav=3.34 days and the time at
which the pond empties, tp =2.6022 days is computed by applying the iteration
procedure as proposed in Mollerup and Hansen (2007). In FVM-simulation, the
pond empties at approximately t =2.5833 days. I.e. tp is approximately 0.7%
higher for the power series solution than for the similar FVM results obtained
with a rather rough discretization in time. Minor errors can be expected in the
power series solution as only the �rst 4 terms are calculated. For constant-head
simulation the �rst 6 terms are calculated. Philip (1957b) found that normally
only �rst two or three terms are necessary for a for practical use su�cient correct
solutions.

In �gure 1.5, the wetting pro�les as calculated by applying FVM and the
power series theory are shown. The wetting pro�les are shown for t = 1/5, 2/5, 3/5, 4/5
and 1 · tp. As it can be observed, the solutions are almost identical except for
t = tp (2.6022 days) where the e�ects of the slightly earlier emptying ponded
water in the FVM simulation instantly e�ects the water content pro�les.

Horizontal constant-head in�ltration

For also insuring that horizontal �ows are simulated correctly a simulation with
a horizontal oriented column is made. For the FVM simulation, the column
has height of 1 cell and a width of 800 cells with ∆x = ∆z =1 cm. The left
boundary condition is H =20 cm and the initial condition is hn =-200 cm.
Vertical constant-head in�ltration can analytically be calculated as:

I = A1

√
(t) (1.59)
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Figure 1.5: Analytical and FVM solution for vertical falling head in�ltration.
The solution is shown for t = 1/5, 2/5, 3/5, 4/5 and 1 · tp.

where A1 is identical to the A1 calculated for vertical in�ltration with constant-
head (and falling-head) conditions. Contrary to vertical in�ltration, equation
(1.59) is applicable also for longer periods. Figure 1.6 shows the water content
pro�les at t = 1/5, 2/5, 3/5, 4/5 and 1 · tgrav. as calculated with FVM and the
power series theory. As it can be seen are the solutions almost identical.

1.4.2 Vertical constant-head in�ltration in a wide column

Until now all the veri�cation simulations are made for a grid consisting of only
1 cell in the direction perpendicular to the �ow direction. Also the size of the
cells was equal. In the wide column experiment the cell height varies with the
depth. The soil column consists of 3 horizons (A, B and C). The A-horizon is
25 cm depth with ∆z =1 cm, the B-horizon is 75 cm depth with ∆z =3 cm, and
the C-horizon is 400 cm depth with ∆z =8 cm. The soil column have a width
of 200 cm with ∆x =20 cm. Figure 1.7 shows the mesh and �gure 1.8 shows a
upper part of the mesh.

In the simulation is the ponding depth constantly H = 20 cm. Figure 1.9
shows the water content after 1 day. As it can be observed, the water do not
vary with the x-coordinate for a given depth, i.e. there is no indication of
unintended exchange of water between internal vertical cell boundaries. Also
here (not shown) comparisons with a power series solution shown �ne agreement
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Figure 1.6: Analytical and FVM solution for horizontal in�ltration. The solu-
tion is shown for t = 1/5, 2/5, 3/5, 4/5 and 1 · tgrav.

1.4.3 Other simulations

Also a simulation with a Neumann (�ux) condition at the upper boundary and
a simulation with a non-zero sink term have been conducted. The simulations
showed mass-balances with negligible errors.

20



Figure 1.7: Mesh for the wide column simulation.

Figure 1.8: Upper left part of mesh used for the wide column simulation.
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Figure 1.9: Water distribution after 1 day in the wide column simulation.
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Chapter 2

Solute movement

2.1 2-domain matrix transport

For describing the solute movement, the soil matrix as solved by Richard' equa-
tion (equation (1.7)) the water is divided into two domains, a primary and a
secondary domain:

θm = θ1 + θ2 (2.1)

where θ1 and θ2 are the water content in the primary and the secondary domain,
respectively. The primary part representing the �ow in the smallest pores is
always �lled �rst. When the matrix water content, θm exceeds a certain limit,
θlim the secondary domain start to be �lled, i.e θlim is maximum value of θ1.
Thus, the primary part of θm can be expressed as

θ1 = min(θm, θlim) (2.2)

The secondary domain representing the �ow in the largest pores is emptied �rst.
The secondary part of θm can then expressed as

θ2 = max(0, θm − θlim) (2.3)

The �uxes as computed by Darcys equation are divided into two; a part repre-
senting the �uxes in the primary domain, q1 and a part representing the �uxes
in the secondary domain, q2:

qm = q1 + q2 (2.4)

Similarly is the hydraulic conductivity matrix divided into a primary and a
secondary part.

Km = K1 + K2 (2.5)

where K1 can be calculated
K1 = K(θ1) (2.6)
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i.e. using the hydraulic conductivity function as used for the water movement
computations, but with θ1 instead of θ. Thus K2 can be calculated as:

K2 =

{
0 for θ2 = 0

K(θm)−K(θlim) for θ2 ≥ 0
(2.7)

As a consequence of Darcy's equation can the �uxes q1 and q2 be calculated as

q1 =
‖K1‖2
‖K‖2

q (2.8)

q2 =
‖K2‖2
‖K‖2

q (2.9)

The associated Darcy velocity can be calculated as v1 = q1/θ1 and v2 = q2/θ2.
It should be remarked that when there is water in the secondary domain is the
associated velocity, v2 often considerably larger than v1.

The solute concentration is similarly divided into a part associated with the
primary water, C1 and a part associated with the secondary water, C2. The
exchange of solutes between the primary and the secondary domain is driven
by the concentration di�erences. The transfer of solutes from the primary do-
main to the secondary domain can be regarded as a sink in the primary domain,
Γs1→s2 or a source in the secondary domain, −Γs2→s1

Γs1→s2 = −Γs2→s1 =

{
α1→2(C1 − C2) for C1 ≥ C2

α2→1(C1 − C2) for C1 < C2

(2.10)

The rates for moving solutes from C1 to C2, α1→2 is not necessarily equal to
the rate for moving solute from C2 to C1, α2→1.

The mass balance for the solute can be expressed as:

∂(ρbCa)

∂t
+
∂(θ1C1)

∂t
+
∂(θ2C2)

∂t
+
∂(θmpCmp)

∂t
= −∇ · j1 −∇ · j2 −∇ · jmp − Γs (2.11)

where ρb is the soil bulk density and Ca is the concentration in the adsorbed
phase. θmp is the volumetric water content in the macropore domain and Cmp

is the concentration. j1, j2 and jmp are the �uxes in the the primary, secondary
and macroporous domain. Γs is the net sink term of the solute.

2.2 Solute movement in the primary domain: Advection-

dispersion equation

Three physical processes can contribute to movement of solutes in the primary
part of the soil water:
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• advection

• molecular di�usion

• hydrodynamic dispersion (only in connection with advection)

Advection (or bulk �ow) is the process where the dissolved chemical moves
with the soil solution. The �ux of solute can be described as:

j1 = q1C1 (2.12)

The Molecular di�usion is a result of the Brownian motion (random walk) of the
molecules. A process related to the movement of the water is the hydrodynamic
dispersion, which is a consequence of the fact that �ow is not uniform, because
the �ow paths move around obstacles and air, but also because of variation in
pore size and the non-uniform velocity distribution inside the pores. Mathe-
matically the hydrodynamical dispersion process can be described as a di�usion
process. The movement by di�usion like processes can be expressed as:

j1 = −θ1D∇C1, D =

[
Dxx Dxz

Dzx Dzz

]
(2.13)

where D is the dispersion tensor (or matrix). The consequence is that the
solute tries to move from areas with high concentration to areas with lower
concentration. The elements in D are often calculated as:

Dxx = αL
v2
1,x

|v1|
+ αT

v2
1,z

|v1|
+D∗

Dzz = αL
v2
1,z

|v1|
+ αT

v2
1,x

|v1|
+D∗

Dxz = Dzx = (αL − αT )
v1,xv1,z
|v1|

(2.14)

where D∗ is the molecular di�usion. The rest of the terms are arising from the
hydrodynamic dispersion. αL is called the longitudinal dispersion and αT the
transversal dispersion. The calculation of the dispersion tensor is based on v1

and not v = q/θ.

The molecular di�usion can be calculated as:

D∗ = τD0 (2.15)

where D0 is the di�usion coe�cient for the solute in free water and τ is the
tortuosity factor. As an example Millington and Quirk (1961) suggested:

τ =
θ

7/3
1

θs
(2.16)

Also here, the value is based on θ1 and not the the total matrix water content
θm. If we are using equation (2.16) and expressing the mean velocity in the
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pores associated with solute movement by q1 and θ1, the elements of θ1D can
be expressed as:

θ1Dxx = αL
q2
1,x

|q1|
+ αT

q2
1,z

|q1|
+D0

θ
10/3
1

θs

θ1Dzz = αL
q2
1,z

|q1|
+ αT

q2
1,x

|q1|
+D0

θ
10/3
1

θs

θ1Dxz = θ1Dzx = (αL − αT )
q1,xq1,z
|q1|

(2.17)

The solute movement can be expressed as a sum of the advection and the dif-
fusion process:

j1 = θ1C1v1 − θ1D∇C1 = C1q1 − θ1D∇C1 (2.18)

The mass balance of dissolved solutes in the primary domain yields:

∂(θ1C1)

∂t
= −∇ · j1 − Γs1 (2.19)

where Γs1 is the sink term which remove solutes from the primary water do-
main. The removed (or added) solute can be absorbed, moved to the secondary
domain (Γs1 as expressed by equation (2.10) or the macropore domain or be
subject to chemical or biological reduction.

The boundary conditions to the equation speci�es a combination of C1 and
its derivative on the boundary. Also here, the Dirichlet boundary condition
(speci�ed concentration) and the Neumann boundary condition, where the �ux
through the boundary is speci�ed, are common. The Dirichlet boundary condi-
tion is:

C1 = C1,0 (2.20)

where C1,0 is the predescribed concentration. The Neumann boundary condition
is:

n̄ · (C1q1 − θ1D∇C1) = n̄ · j1 = j1 (2.21)

where j1 is the size of the �ux, positive for outward �ux. As boundary condi-
tion for the ingoing �ow j1 = n̄ ·q1C1,0 = q1C1,0 is often used where C1,0 is the
concentration of the �ow. As lower boundary condition is j1 = n̄ · q1C1 = q1C1

often used. In both cases it is assumed that the di�usion crossing the border is
zero.

Summarized, the problem to be solved for determination of the concentration
of solute in Ω is:

θ1
∂C1

∂t + C1
∂θ1
∂t = −∇ · (C1q1 − θ1D∇C1)− Γs1 in Ω

n̄ · (C1q1 − θ1D∇C1) = j1 on ∂Ω1

C1 = C1,0 on ∂Ω2

(2.22)
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where ∂Ω1 is the part of the boundary with Neumann condition, and ∂Ω2 is the
part of the boundary with Dirichlet boundary conditions. Also here it is not
necessary that ∂Ω1 and ∂Ω2, respectively, are coherent.

2.3 Numerical solution

The basic principles behind the �nite volume modeling of the solute trans-
port are very similar to the numerical solution of the water movement equation
(Richards' equation). But there are some di�erences. One of the major di�er-
ences is that the advection di�usion equation is considered as linear inside each
timestep. I.e. the coe�cients in the equation in each of the timesteps are inde-
pendent of the concentrations in the current timestep. This simpli�cation can
be done when the size of the sources are dependent only on the concentrations
in the previous timestep. Similar are adsorption added as sink/source term.
Thus di�erent from the water movement simulation, the Picard iterations loop
used inside each timestep can be avoided.

2.3.1 Stabilization methods

There are often a lot of numerical problems involved with the solving of the
convection di�usion problem especially when the problems are dominated by
convection. The numerical solutions have often unexpected oscillations in that
situation. There have been developed a lot of more or less complicated methods
to reduce the problems. Three of the methods are upstream weighting, streamline
di�usion, and timestep reduction.

Upstream weighting

When steep concentration fronts occur, numerical oscillations can raise. A
method to stabilize the system is to apply upstream weighting for the advective
solute movement. For advective transport between two cells is the concentration
at the face between the cells normally calculated as the average concentration
of the two cells. For fully upstream weighting is the concentration at the cell
face equal to the upstream concentration.

In Daisy2D it is possible to set a parameter, 0 ≤ α ≤ 1 where α = 1 corre-
sponds to a fully upstream weighting and α = 0.5 corresponds to setting the
cell face concentration to the average concentration of the two cells. It is not
recommended to apply an α < 0.5.

Pe and Cr numbers

There are two di�erent numbers which are important for the stability. The
Peclet number :

Pe = v1∆x/D (2.23)
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where v is the velocity, ∆x is the space increment and D is the di�usion coe�-
cient (including molecular di�usion and hydrodynamic dispersion). The Courant
number is de�ned as:

Cr = v1∆t/∆x (2.24)

Theoretical stability investigations are rather complicated, especially in a two or
three-dimensional space with heterogeneous soil. Most of the theoretical stabil-
ity considerations are done for one-dimensional �ow with uniform velocity. The
classical constraints for stability for the standard Crank-Nicholson-Galerkin (Fi-
nite Element Method) is Pe ≤ 2 and Cr ≤ 1, Perrochet and Bérod (1993).

It can easily be concluded that keeping the Courant number lower than one
is just a question of su�ciently small timesteps. But is it possible to make a
mesh which under all circumstances prevents that the Peclet number raises over
2?. The Peclet number for the �ow in the x-direction is:

(Pe)x =
q1,x∆x

θ1Dxx
=

q1,x∆x

αL
q1,xq1,x
|q| + αT

q1,zq1,z
|q| +D0

θ
10/3
1

θs

<
q1,x∆x

αT
q1,xq1,x+q1,zq1,z

|q1|
=
q1,x∆x

αT |q1|
≤ ∆x

αT

(2.25)

where it is assumed that αL ≥ αT . The same procedure can of course be used
to evaluate (Pe)z. It can then be concluded that the maximum Peclet number is
lower than ∆x/αT . If the longitudinal dispersivity is 5 cm and the transversal is
1/10 of the longitudinal and the maximum allowed Pe is 2 can it be concluded
that the maximum side length of the elements shall be approximately 1 cm.
This will result in a very �ne mesh.

Besides the upstream weighting method it is possible to choose between 2 sta-
bilizing methods:

1. Introducing extra di�usion in the streamline direction so PeCr ≤ γ. Where
γ is the performance index.

2. Varying the size of ∆t so PeCr ≤ γ.

It is of course also possible to deselect any stabilizing methods. The last
stabilizing method is straight forward, but the �rst deserves its own subsection:

Streamline di�usion

For practical situation are there often stability so long PeCr ≤ γ where 2 ≤ γ ≤
10 (Perrochet and Bérod, 1993) which under all circumstances is less restrictive
than keeping both Pe ≤ 2 and Cr ≤ 1. γ is called the performance index.

In the streamline di�usion is according to Perrochet and Bérod (1993) added
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some additional longitudinal dispersion to prevent that PeCr raises over the cho-
sen performance index. The additional longitudinal dispersion, ᾱL is calculated
as:

ᾱL =

{ |v1|∆t
γ − αL − D∗

|v1| , for αL + D∗

|v1| <
|v1|∆t
γ

0, for αL + D∗

|v1| ≥
|v1|∆t
γ

(2.26)

Stability tests

To investigate the stability of the numerical model is a simple system modeled.
The situation here is a one-dimensional column, horizontal column with steady-
state water �ow with pore velocity v. There is no secondary water, θ2 thus v1 =
v. The di�usion, D (both molecular di�usion and hydrodynamic dispersion)
is given. For the present test is the solute non-adsorping. For a scenario with
linear adsorping (constant retardation factor) the adsorption have a stabilizing
e�ect, thus for linear adsorping solutes the model is expected to be more stable.
The advection-dispersion equation in one dimension can be written as:

∂C1

∂t
= D

∂2C1

∂x2
− v ∂C1

∂x
(2.27)

where v = q/θ. The initial condition is a zero concentration in the whole column:

C1(x, 0) = 0 (2.28)

At the left boundary is the solute �ux constant.(
−D∂C1

∂x
+ vC1

) ∣∣∣∣
x=0

= vC1,0 (2.29)

The solution can then according to van Genuchten and Alves (1982) be
written as:

C1(x, t) =
1

2
C1,0 erfc

[
x− vt

2(Dt)1/2

]
+

(
v2t

πD

)
exp

[
− (x− vt)2

4Dt

]
− 1

2
C1,0(1 +

vx

D
+
v2t

D
) exp(vx/D) erfc

[
x+ vt

2(Dt)1/2

] (2.30)

For the simulations is made a water �ow situation with steady state �ow
with the chosen pore water velocity v = 1 cm/hour. C1,0 is for the simplicity
chosen to 1 and D = 0.05 cm2/hour. For the Daisy simulations is the virtual
soil column 10 cm wide and 1 cm high. On the domain is generated a regular
mesh with 100 equally large elements, each with ∆x = 0.1 cm. With ∆t chosen
to 1 hour are Cr = 10 and Pe = 2, i.e. PeCr = 20. The numerical parameter, ω
is set to 1/2, i.e. a Crank-Nicholson scheme.

In �gure 2.1 is the analytical solution compared with numerical solutions with
and without upstream weighting corresponding to α = 1 and α = 0.5, respec-
tively. Streamline di�usion and timestep reduction has not been applied. As it
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can be observed, are the wiggles signi�cantly smaller when applying upstream
weighting. The only drawback seems to be slightly more numerical di�usion
compared with the numerical solution for α = 0.5. In the following cases up-

Figure 2.1: Analytical solution compared with numerical solution with regular
weighting (α = 0.5) and upstream weighting (α = 1.0). The solutions are shown
as concentration as function of x after simulation of 4 hours. For the actual case
are v = 1 cm/hour, D = 0.05 cm2/hour. For the numerical simulations are
∆t = 1 hour and ∆x = 0.1 cm, i.e. Pe = 2 and Cr = 10.

stream weighting has not been applied (α = 0.5).

In �gure 2.2 is the analytical solution shown. Besides is the numerical solu-
tion shown for the cases: no stabilization, timestep reduction and streamline
di�usion. For both the timestep reduction and streamline di�usion method is
the performance index, γ = 10 chosen. For the simulation without any stabi-
lization are the wiggles signi�cant. The wiggles are smaller for the simulation
with streamline di�usion. By comparing with the analytical solution can the
additional di�usion be observed. The additional di�usions e�ectively reduced
the Pe-number from 20 to 10. The remaining graph shows the simulation with
the timestep reduction stabilizing method where the size of ∆t is changed so
PeCr ≤ 10. Here the size of the timestep is reduced from ∆t = 1 hour (no
stabilization) to 0.5 hour. E�ectively the Cr-number is reduced from 10 to 5,

30



i.e. for the computation is used 2 times so many timesteps (or approximately
2 times so long CPU-time). Compared with the numerical solution without
stabilization are wiggles reduced, but have also smaller wavelength.

Figure 2.2: Analytical solution compared with di�erent numerical solutions.
The solutions are shown as concentration as function of x after simulation of 4
hours. For the numerical solution without stabilization are Pe = 2 and Cr = 10.

In �gure 2.3 is the analytical and numerical solutions shown. The numerical
solutions are computed using di�erent performances indexes. The performance
index, γ is changed applying timestep reduction. It can be observed that the
wiggles are signi�cant for γ = 10, but for γ = 5 (and lower) the size of the
wiggles seems to be acceptable for most purposes.

In �gure 2.4 is the analytical solution shown. Also the numerical solutions for
varying performances indexes are shown. The performance index, γ is changed
applying streamline di�usion. The wiggles are reduced when using a low value
of γ, but compared with the analytical solution, the steepness of the front is
reduced dramatically.
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Figure 2.3: Analytical solution compared with di�erent numerical solutions ob-
tained using timestep reduction with varying performance index. For the simula-
tion are v = 1 cm/hour and D = 0.05 cm2/hour. For the numerical simulations
is ∆x = 0.1 cm and ∆t is ranging from 1/10 hour (γ = 2) to 1/2 hour (γ = 10).
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Figure 2.4: Analytical solution compared with numerical solutions obtained
using streamline di�usion with varying performance index. For the analyti-
cal solution are v = 1 cm/hour and D = 0.05 cm2/hour. For the numerical
simulations are ∆x = 0.1 cm and ∆t = 1 hour.
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2.3.2 Upper boundary condition

The upper boundary condition describes the movement of solute applied at the
surface that moves into the soil. It also describes the movement of solutes out
from the domain if the water is �owing out at the upper boundary.

If the soil surface not is ponded, the �ux into the soil is moved by advection
into the domain, with the water. If the surface is ponded with water containing
a solute, the solute is also moved solely by advection. A little more accurate de-
scription could have been obtained if the boundary condition was implemented
as a Dirichlet condition which also allowed the solute to be moved by dispersion
and di�usion into the soil. It is assessed that the error is insigni�cant.

When the water moving out of the domain. No solute is following the water.
This is for most solutes a good boundary condition - at least for evaporation
processes. For a situation with liquid water is leaving the soil through the up-
per boundary the description is not appropriate, but at present Daisy is not
intended for that kind of scenarios. Summarized the upper boundary condition
can be expressed as:(

−θ1Dzz
∂C1

∂z
+ qzC1

) ∣∣∣∣
z=zsurf

=

{
qoutCsurf, qout < 0

0, qout > 0
(2.31)

where zsurf is the z-coordinate of the soil surface, qz is the �ow (positive up-
wards) and qout is the �ux out of the domain (negative for �ux into the domain).
Csurf is the concentration of the surface water.

Numerically all the types of upper boundary conditions is implemented as ex-
plicit Neumann conditions, i.e. the solute movement over the boundary is inde-
pendent of the solute concentrations in the domain.

2.3.3 Lower boundary condition

The lower boundary condition describes the movement of solute through the
lower boundary. If the water has a free drainage condition, there is a �ux condi-
tion for the solute when the solute is moved out of the domain by advection. If
there is speci�ed a groundwater table or aquitard boundary condition, i.e. pres-
sure (Dirichlet) conditions for the water �ow, also the solute movement have a
Dirichlet condition with a speci�ed concentration at the boundary. For a spec-
i�ed steady-state water �ux (mostly used for testing purposes), it is possible
both to chose speci�ed concentration (Dirichlet) and �ux boundary conditions.

Numerically the Neumann boundary conditions is implemented, either implicit
or explicit - implicit when the water �ux is outwarded from the lower boundary
and the concentration associated with the �ux is given by the concentration
inside the domain - explicit when the water moves into the domain and the
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associated concentration is the concentration outside the domain.

The Dirichlet boundary condition is implemented as an explicit Neumann bound-
ary condition. Based on the solution in the previous timestep the �ux is cal-
culated with the given concentration on the boundary. The method is di�erent
from the method used for the water movement, but prevents an extra iteration
loop inside each timestep with following increased computational times. In the
water movement simulations, the iteration loop was under all circumstances nec-
essary since the equation is non-linear. But with very large concentration gradi-
ents (and following large movement by di�usion and dispersion processes) and
small cells at the boundary some numerically problems can occur. To prevent
this kind of instability, the size of the timesteps can be lowered if also timestep
reduction is chosen as stabilizing method to prevent to high PeCr-numbers. If
timestep reduction is chosen, the timestep is reduced so:

• For di�usion into the cell, only half of the volume of the concentration
di�erence between border and cell can be transported by di�usion over
the boundary into the cell in a timestep.

• For di�usion out from the cell, only half of the volume of the concentration
di�erence between cell and border can be transported by di�usion over the
boundary out from the cell in a timestep.

To prevent to large computational times, the timestep can not be lower than
a chosen a minimum value. If the instabilities are high and produce negative
concentrations at the cells at the boundary, the computations in the timestep
are repeated and the solute is only moved by advection over the boundary. This
can happen if the minimum value of the size of the timesteps is chosen to high.

2.3.4 Veri�cation: One-dimensional �ow with retardation

and degradation

There are developed a lot of analytical solutions for the one-dimensional convective-
dispersive equation, see for example van Genuchten and Alves (1982). The equa-
tions are developed for situations where the di�usion is constant and the water
�ow is steady state (i.e. ∂θ1/∂t = 0 and constant q). The secondary water
content, θ2 = 0 and all the adsorption processes are going through the primary
water to the sorped phase. These conditions are seldom ful�lled in the 'real
life' where both the water content and the �ux are time-dependent. For testing
the solute transport model is a situations with steady state water movement
simulated.

If the adsorption process is very fast, the amount of adsorbed solute can be
expressed with a adsorption isotherm which is a relationship between adsorbed
(Ca) and dissolved concentration, C1. The bulk density is assumed to be con-
stant through time. The two �rst terms of the left hand side of equation (2.11)
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can be rewritten as:

ρb
∂Ca
∂t

+
∂(C1θ1)

∂t
= ρb

∂Ca
∂C1

· ∂C1

∂t
+ θ1

∂C1

∂t
+ C1

∂θ1
∂t

=

θ1R
∂C1

∂t
+ C1

∂θ1
∂t

(2.32)

where R often in the literature is called the Retardation factor :

R =
ρb
θ1
· ∂Ca
∂C1

+ 1 (2.33)

The most simple adsorption isotherm is the linear adsorption where Ca = KdC1

and as a consequence R = 1 + ρbKd

θ1
.

Zero or �rst order kinetics are included in the model. In zero order kinetics,
the velocity of the reaction is independent of the concentration and in 1.st order
kinetics the reaction velocity is proportional to the concentration. Thus the
advection dispersion equation yields:

Rθ1
∂C1

∂t
+C1

∂θ1
∂t

= −∇ · (C1q1 − θ1D∇C1)− θ1µlC1 + ρbµs (2.34)

where the second last term represents a �rst order production in the liquid
phase. µl is the rate constant. An often-used term is the half-life. In a batch
experiment the half-life is the time required for the mass of reacting materiel
to decrease to half the original mass. The reaction half-life can be calculated
as t1/2 = ln(2)/µl. The equation can be used for many chemical processes, and
for radioactive decay. The last term on the right hand side of equation (2.34)
represents a zero order removal from the solid to the liquid phase. µs is the
rate constant for the zero order process. In van Genuchten and Alves (1982) is
considered a one-dimensional case with degradation of both zero and �rst order.
The governing di�erential equation can then be expressed as:

R
∂C1

∂t
= D

∂2C1

∂x2
− v ∂C1

∂x
− µC1 + γ (2.35)

where µ is the rate constant for �rst order decay in the liquid and γ represents
the similar rate constant for zero-order production in the liquid phase. For the
simulation, the initial condition is

C1(x, 0) = C1,i (2.36)

and the upper boundary condition is(
−D∂C1

∂x
+ vC1

) ∣∣∣∣
x=0

=

{
vC1,0, 0 < t ≤ t0
0, t > t0

(2.37)
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The solution is

C1 =

{
γ
µ
+ (C1,i − γ

µ
)A(x, t) + (C1,0 − γ

µ
)B(x, t), 0 < t ≤ t0

γ
µ
+ (C1,i − γ

µ
)A(x, t) + (C1,0 − γ

µ
)B(x, t)− C1,0B(x, t− t0), t > t0

(2.38)
where A(x, t) and B(x, t) can be calculated as

A(x, t) = exp(−µt/R)·{
1− 1

2
erfc

[
Rx− vt

2(DRt)1/2

]
−
(

v2t

πDR

)1/2

exp

[
− (Rx− vt)2

4DRt

]
+

1

2

(
1 +

vx

D
+
v2t

DR

)
exp(vx/D) erfc

[
Rx+ vt

2(DRt)1/2

]} (2.39)

B(x, t) =
v

v + u
exp

[
(v − u)x

2D

]
erfc

[
Rx− ut

2(DRt)1/2

]
+

v

v − u
exp

[
(v + u)x

2D

]
erfc

[
Rx+ ut

2(DRt)1/2

]
+

v2

2µD
exp

[
vx

D
− µt

R

]
erfc

[
Rx+ vt

2(DRt)1/2

] (2.40)

with

u = v

√
1 +

4µD

v2
(2.41)

For comparing the analytical solution with the Daisy solution is chosen an
situation with v = 10 cm/day, D = 5 cm2/hour, γ = 0.2 hour −1 and µ = 0.5
hour −1. For the simulation is ∆x=1 cm. The length of the timesteps, ∆t is
1/10 day. In �gure 2.5 is the Daisy solution compared with the above described
analytical solution. As it can be seen are the solutions in practise coincident.

2.4 Solute movement in the secondary domain:

Advection

The heterogeneities are normally relatively small in the secondary domain. And
when θ2 6= 0 are the movement by advection relatively large compared to the
movement by molecular di�usion. As a consequence is di�usion-like processes
(di�usion and dispersion) in the secondary domain negligible. Thus the solute
movement is modeled as a purely advection process:

j2 = q2C2 (2.42)

The mass balance of dissolved solutes in the secondary domain yields:

∂(θ2C2)

∂t
= −∇ · j2 − Γs2 (2.43)
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Figure 2.5: Comparison between analytical and Daisy simulation of a process
with adsorption, zero order production and �rst order degradation.

where Γs2 is the sink term which remove solutes from the secondary water
domain. The removed (or added) solute can be absorbed, moved to the primary
domain (Γs1 as expressed by equation (2.10) or to the macropore domain or be
subject to chemical or biological reduction.
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Chapter 3

Heat transfer

3.1 Theory

Two physical processes can contribute to heat transfer movement in the matrix
part (non macroporous part) of soil:

• conduction

• convection

Mathematical the transport can be expressed as:

qh = −KH∇T + CwρwTqm (3.1)

where T is the temperature, KH is the thermal conductivity, Cw the speci�c
heat storage of water, ρw the density of water and qm is the water �ux vector
for matrix �ux. Both KH and Cw are calculated as in the existing 1D Daisy

The conservation of heat can be expressed as

∂H

∂t
= −∇ · qh + Sh = ∇ · (KH∇T − CwρwTqm) + Sh (3.2)

where H is the heat content of the soil, t the time and Sh is a heat source.
If water is added to the domain by drip irrigation with an amount of Si the
associated added heat is CwρwSiTi where Ti is the temperature of the irrigation
water which at the moment is the same as T , i.e. Ti = T . For water removed
from the soil with a rate of Sw, the corresponding amount of heat is CwρwSwT .
In the model heat can also be added directly without exchanging water.

The left hand side of equation (3.2) can be written as

∂H

∂t
=
∂(CsT )

∂t
= Cs

∂T

∂t
+ T

∂Cs
∂t

(3.3)

39



where Cs is the speci�c heat capacity of the soil (including water).

The boundary conditions speci�es a combination of the the temperature and
its derivative on the boundaries. Actual in form of speci�ed heat �ux KH∇T −
CwρwTqm (Neumann boundary condition) or speci�ed temperature T0 (Dirich-
let boundary condition). Summarized, the problem to be solved for determina-
tion of the temperatures in Ω is:

Cs
∂T
∂t + T ∂Cs

∂t = ∇ · (KH∇T − CwρwTqm) + Sh in Ω

n̄ · (CwρwTqm −KH∇T ) = qh on ∂Ω1

T = T0 on ∂Ω2

(3.4)

where ∂Ω1 is the part of the boundary with Neumann condition, and ∂Ω2 is
the part of the boundary with Dirichlet boundary conditions. Also here it is
not necessary that ∂Ω1 and ∂Ω2, respectively, are coherent. n̄ is the outwarded
unit normal to the boundary and qh is the size of the heat movement out of the
boundary.

3.2 Numerical solution of Heat transfer equation

The basic principles behind the �nite volume modeling of the heat transfer is
almost equal to the numerical solution of the equation for the solute movement
(advection-dispersion equation).

But there are some di�erences. In Dasisy2D is made the assumption that the
thermal conductivity is equal in all direction. This makes the implementation
easier than the advection-dispersion equation where the hydrodynamic disper-
sion are dependent on the direction. Furthermore the heat movement by con-
duction is so dominant over the movement caused by convection that numerical
instabilities under normal conditions not is expected. Thus di�erent from the
implementation of the advection-dispersion equation there is not implemented
made any stabilizing methods, except for the boundary conditions (see later).

The partial di�erential equation (PDE) describing the heat transfer (see equa-
tion (3.4)) is considered linear inside each timestep where the values from the
beginning of the timestep is used. For frost/thaw processes both the conductiv-
ity for heat and the heat capacity is temperature dependent. But the changes
during a typical timestep very small. Following are the errors, considering the
PDE linear for each timestep small. As a consequence of the quasi linearity are
Picard iterations inside each timestep avoided.

3.2.1 Upper boundary conditions

The upper boundary condition describes the transfer of heat energy between
the atmosphere and the soil.
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In Daisy is the upper boundary condition of Dirichlet type, i.e the surface
is forced to have a speci�c temperature. Except when snow is covering the sur-
face the soil temperature is approximated with the air temperature. For snow
covered surfaces are the soil temperature estimated as in the existing Daisy.

At �rst the upper boundary was implemented in a similar manner as used
for the Dirichlet boundary conditions for solute movement. For the heat simula-
tions, the temperature is with the method given exactly at the boundaries. But
with the relatively large timesteps intended to be used in the heat simulations
the method is sometimes unstable.

Instead a more simple and stable method is applied. In the implementation,
the boundary temperature is set in the the nodal points in the upper boundary
cells. Then the speci�ed temperature is given a half cell lower than wanted. The
tradeo� compared to the other method is small since the uncertainties in the
heat simulations are under all circumstances large. And reducing the CPU-costs
by using large timesteps when possible is important.

3.2.2 Lower boundary condition

The lower boundary condition describes the transfer of heat energy through the
lower boundary. It is possible to choose between 2 boundary conditions: A �ux
conditions where no energy is transferred through the boundary or as in Daisy
1D a forced temperature with a annual oscillation.

The forced temperature is implemented in a similar manner as for the upper
boundary condition. For a no �uxcondition nothing has to be done.
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