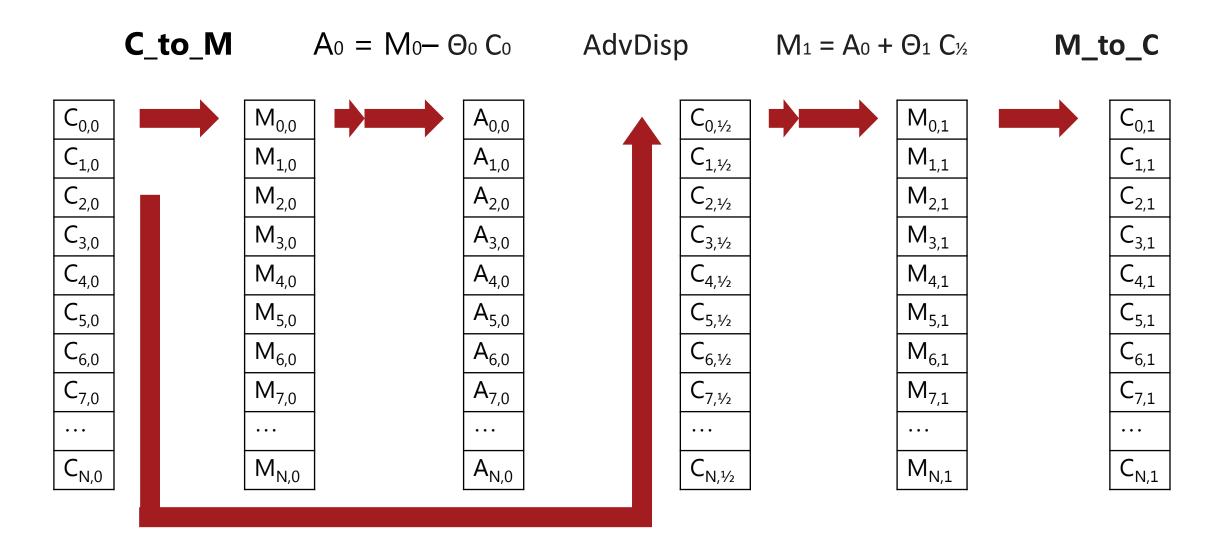
Adsorption in Daisy

Python interface


Per Abrahamsen

UNIVERSITY OF COPENHAGEN

Adsorption and solute transport

Linear adsorption

test-MySorb.dai

```
(defadsorption MySorb Python
  "Use Python for sorption."
  (module "daisy")
 (C to M "C to M")
 (M_to_C "M_to_C")); Optional
(defchemical MyStuff classic
  (decompose rate 0)
  (adsorption MySorb))
(defchemistry MyChem default
 (trace MyStuff))
```

daisy.py

```
def k_soil (f_OC, f_clay):
   k \ OC = 44.1
    k clay = 9.2
    return f_OC * k_OC + f_clay * k_clay
def C_to_M (C, Theta_sat, Theta, rho_b, f_OC, f_clay, d50, T):
    k = k \text{ soil } (f OC, f clay)
   M = rho b * k * C + Theta * C
    return M
def M_to_C (M, Theta_sat, Theta, rho_b, f_OC, f_clay, d50, T):
    k = k soil (f OC, f clay)
   # M = rho b * k * C + Theta * C =>
    C = M / (rho b * k + Theta)
    return C
```

Parameters

Name	Unit	Description
C	g/cm ³	Concentration in water
М	g/cm³	Concentration in system
Theta_sat	cm ³ /cm ³	Saturated volumetric water content
Theta	cm ³ /cm ³	Actual volumetric water content
rho_b	g/cm³	Dry bulk density (soil weight per system volume)
f_OC	0-1	Fraction of organic carbon in soil
f_clay	0-1	Fraction clay of in soil
d50	μm	Median diameter of oil particles by weight
T	°C	Soil temperature