PROCESS-BASED SIMULATION OF GROWTH AND RE-GROWTH OF PERENNIAL PLANTS WITH THE DAISY MODEL

DAISY WORKSHOP KIRIL MANEVSKI 5 NOVEMBER 2021 RESEARCHER

Knowledge that benefits society

DEPARTMENT OF AGROECOLOGY

FIELD CROPS AND PARAMETERIZATION

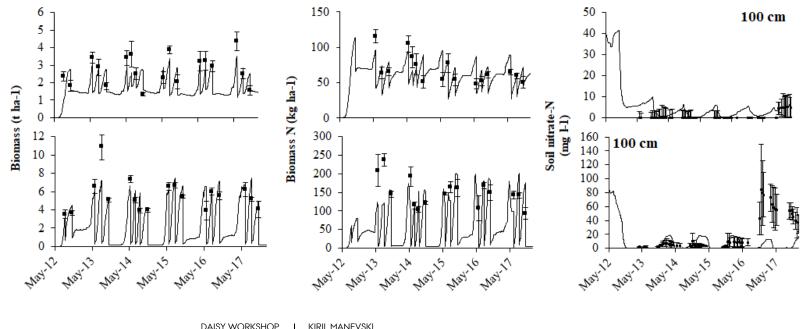
*grass/clover, 3-4 cuts yr⁻¹, 0 kg N ha⁻¹; (stub 10 [cm]), 90% harvest (Roncossek, 2013)

*festulolium, 3-4 cuts yr⁻¹, 400-500 kg N ha⁻¹; "*Ryegrass*"; (stub 3 [cm]), 95% harvest **photosynthesis**= Jiao et al. (2016 a,b); **devel.**= educated guess (60% plant flowered, in the field maybe 20%); **harvest=** (DSmax 1.50); (cut_delay ($x_1 y_1$) ($x_2 y_2$)..)

*miscanthus, 1 cut yr⁻¹ (autumn), 50-150 kg N ha⁻¹; (stub 10 [cm]), 95% harvest
"default"; photosynthesis= Jiao et al. (2016 a,b); root N uptake (one-time change);
devel.= educated guess (flowering 15.10-15.11); harvest= (DSmax 2.00); (DSnew 0.43)

FIELD CROPS AND PARAMETERIZATION

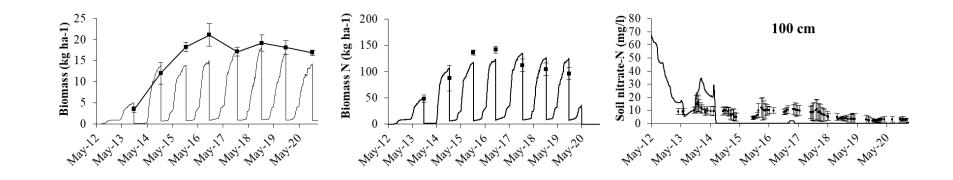
N PERIOR AND IN THE PERIOR


RESULTS

	NSME	RMSE	RMSE	R2	Dev.
Plant t DM/ha			annual	_	
Grass/clover	0.2	0.7 (1.3-4.3)	0.7 (4-11)	0.21	0.1
Festulolium	0.9	1.5 (3.5-11)	3.0 (7-23)	0.36	0.45
Miscanthus	0.9	-	3.5 (3-21)	0.78	-1.5
Plant kg N/ha			annual	_	
Grass/clover	-0.3	22 (48-116)	45 (160-318)	0.2	11.6
Festulolium	0.81	56 (92-236)	100 (377-590)	0.1	-6.2
Miscanthus	0.84	_	10 (48-141)	0.61	0.21

RESULTS AND DISCUSSION

*Grass/clover - fairly acceptable statistics - grass and clover already parameterized *Festulolium - calibrated with *"Ryegrass*"; difficulty to simulate re-growth (*"Ryegrass*" developed to be grown in association with other crops - clover in particular)



DAISY WORKSHOP 5 NOVEMBER 2021

RESEARCHER

RESULTS AND DISCUSSION

*Miscanthus - default plant module parameterized and calibrated; not able to simulate inter-annual pattern; need for dedicated experiments.

DISCUSSION

*modelling re-growth after defoliation

// phenology_std.C

"Only increase DS if assimilate production covers leaf respiration."

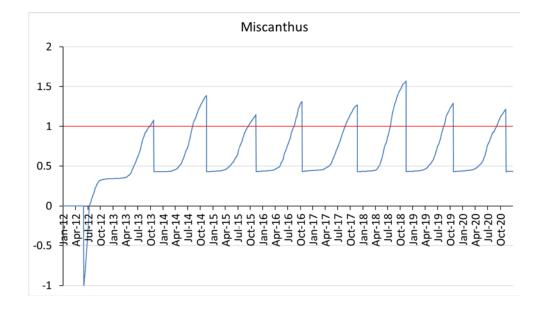
// production.C (assimilate production)
remobilization of assimilate from root?

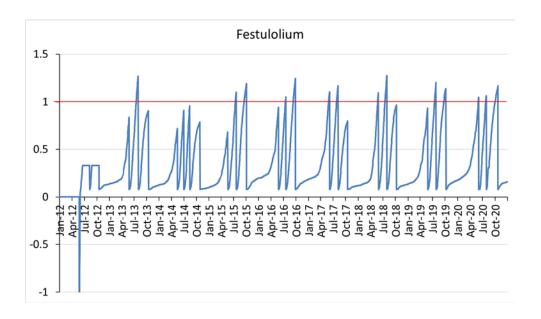
- ShldResC: number [<fraction>] Parameter (default 0) Capacity of shielded reserves (fraction of stem DM).
- *ReMobilDS*: number (dimensionless) Parameter (default 1.2) Remobilization, Initial DS.
- *ReMobilRt*: number $[\mathbf{d}^{-1}]$ Parameter (default 0.1) Remobilization, release rate.
- *IntDSRelRtRes*: number (dimensionless) Parameter (default 0.8) Initial DS for the release of root reserves.
- *EndDSRelRtRes*: number (dimensionless) Parameter (default 0.8) End DS for the release of root reserves.
- *RelRateRtRes*: number [d⁻¹] Parameter (default 0.05) Release rate of root reserves.

SUM-UP AND OUTLOOK

*Simulation accuracy depended on perennial plant. Assisted auto-calibration? *Support agricultural policy for cultivation of perennial grasses in Denmark

Thanks for attention!





Microcosms and climate chambers

PLANT DEVELOPMENT

DAISY WORKSHOPKIRIL MANEVSKI5 NOVEMBER 2021RESEARCHER

