## **Crop Modelling and Parameterisation**

Iris Vogeler and Uttam Kumar





DAISY WORKSHOP, 5. NOVEMBER 2021 IRIS VOGELER 5 OCTOBER 2021 SENIOR RESEARCHER PERIOR IN THE STREET

## **Model Parameterisation Why?**

Crop models are widely used for

- advising farm management and policy makers
- Research and hypothesis testing
- Defining directions for crop breeding (including climate change adaptation)

Predictions between different models and any particular model used by different expert users show large differences

Uncertainties due to

- Model structure (processes, functional forms)
- Input data (sampling errors, spatial and temporal variability, lack of data availability)
- Model parameters (calibration method)



## **Model Parameterisation**

### No standard approach!

- Complex mathematical model structure
- Nonlinearity of many processes
- Complex interactions of processes
- Many model parameters
- Model outputs generally difficult to link with existing calibration software
- Software with calibration algorithm might converge to local not global minimum
- Problem of equi-finality
- Various model outputs, one or multi-objective calibration?

## **Calibration Procedures – Current Practices**

Study by Seidel et al. (2018)

- Various model platforms and models APSIM, DAISY, DSSAT, STICS
- Mainly calibrated for phenology, yield and biomass
- Additionally grain N, biomass N at harvest, in season measurements of LAI, soil moisture, soil N, in season biomass
- Median number of parameters was 6 (range 1 to 116)
- generally in stages (1<sup>st</sup> stage often phenology)
- Parameter choice based on model developers, or own choice (SA or expert opinion)
- Parameter value ranges generally based on values from literature or expert opinion

Seidel, S.J., Palosuo, T., Thorburn, P., Wallach, D., 2018. Towards improved calibration of crop models – Where are we now and where should we go? European Journal of Agronomy 94, 25-35.

## **Calibration Procedures – Current Practices**

Survey by Seidel et al. (2018)

- Parameter values estimated on
- ➢ Goodness of fit (SSE, RMSE)
- > GLUE (software e.g. build into DSSAT): random sampling method within parameter space
- > Bayesian approach:
- 1. capturing available knowledge via the prior distribution
- 2. likelihood function based on information in the observed data
- 3. combining both the prior distribution and the likelihood function to obtain posterior distribution.
- Parameter uncertainty
- confidence limits for each parameter
- Distribution of possible parameter values
- > Use of parameter uncertainty to calculate uncertainty in model output?

Seidel, S.J., Palosuo, T., Thorburn, P., Wallach, D., 2018. Towards improved calibration of crop models – Where are we now and where should we go? European Journal of Agronomy 94, 25-35.

## **Calibration Procedures – Current Practices**

Survey by Seidel et al. (2018)

- Performance of calibrated model based on:
- Goodness of fit with calibration dataset
- > Data splitting or using the entire dataset to represent the entire population?
- Cross validation
- Site/year/management combinations

Only 1% of survey respondents had no difficulties with calibration!

Seidel, S.J., Palosuo, T., Thorburn, P., Wallach, D., 2018. Towards improved calibration of crop models – Where are we now and where should we go? European Journal of Agronomy 94, 25-35.

## **Parameterisation Procedures**

which of the numerous model parameters?

- Sensitivity Analysis (SA) : Identification of most influential parameters
- Local SA single parameter at a time
- Global SA combined effect of multiple parameters
  - Main effect index and total effect index
- Computationally expensive
- Parameter influence dependent on environmental conditions and management
- Sensitivity of prior assumptions about parameter values





## Sensitivity Analysis (SA)

Identification of most influential parameters - effect on model output

| Parameter selection                                                                          |                     | Para | meter bounds     | Parameter distribution   |                      |  |  |
|----------------------------------------------------------------------------------------------|---------------------|------|------------------|--------------------------|----------------------|--|--|
| Parameter as Listed in APSIM-Sugar<br>Model ( <i>Description</i> )                           | Level               | Code | Unit             | Lower and Upper<br>Bound |                      |  |  |
|                                                                                              | Leaf_size_no = 1    | LS1  | mm <sup>2</sup>  | 500-2000                 |                      |  |  |
| <pre>leaf_size (Leaf area of the respective leaf)</pre>                                      | $Leaf_size_no = 14$ | LS2  | mm <sup>2</sup>  | 25,000-70,000            | 150000 -             |  |  |
|                                                                                              | Leaf_size_no = 20   | LS3  | mm <sup>2</sup>  | 25,000-70,000            | 100000 -             |  |  |
| cane_fraction (Fraction of accumulated biomass<br>partitioned to cane)                       |                     | CF   | $gg^{-1}$        | 0.65-0.80                | 50000-               |  |  |
| sucrose_fraction_stalk (Fraction of accumulated biomass partitioned to sucrose)              | Stress factor = $1$ | SF   | $gg^{-1}$        | 0.50-0.70                | 150000 -<br>100000 - |  |  |
| sucrose_delay (Sucrose accumulation delay)                                                   |                     | SD   | gm <sup>-2</sup> | 0–600                    |                      |  |  |
| min_sstem_sucrose ( <i>Minimum stem biomass</i><br>before partitioning to sucrose commences) |                     | MSS  | gm <sup>-2</sup> | 450-1500                 | 150000 - Parame      |  |  |
| <pre>min_sstem_sucrose_redn (reduction to minimum stem sucrose under stress)</pre>           |                     | MSSR | gm <sup>-2</sup> | 0–20                     | 8 50000-<br>0-       |  |  |
| tt_emerg_to_begcane (Accumulated thermal<br>time from emergence to beginning of cane)        |                     | EB   | °C day           | 1200–1900                | 150000 -             |  |  |
| tt_begcane_to_flowering (Accumulated<br>thermal time from beginning of cane to flowering)    |                     | BF   | °C day           | 5500-6500                | 50000-               |  |  |
| tt_flowering_to_crop_end (Accumulated thermal time from flowering to end of the crop)        |                     | FC   | °C day           | 1750-2250                | 150000 - mm          |  |  |
| green_leaf_no (Maximum number of fully<br>expanded green leaves)                             |                     | GLN  | No.              | 9–14                     |                      |  |  |





## Parameterisation of Crop Phenology

- many physiological processes depend on phenological stage.
- parameterisation of new crop varieties
- The best parameter values for one output might not be the same for another output?
- Which parameters? Degree days to each stage, photoperiod sensitivity, cardinal temperature?
- *Trial and error with goodness of fit –* mostly used procedure
- > Easier to do, than coupling crop models coupled with statistical software
- > Time consuming
- > Low chance of finding the true best-fit-parameters.
- > No information on uncertainty of parameter estimation

### Example1: Parameterisation of Crop Phenology in APSIM Winter Wheat

TRIAL AND ERROR WITH GOODNESS OF FIT- 1 YEAR / 1 LOCATION



# Example 1: Parameterisation of Crop Phenology in APSIM Winter Wheat TRIAL AND ERROR WITH GOODNESS OF FIT- 3 YEARS / 3 LOCATIONS





#### **Example1: Parameterisation of Grain Yield in APSIM Winter Wheat**

TRIAL AND ERROR WITH GOODNESS OF FIT- 5 YEARS / 4 LOCATIONS



#### Example1: Parameterisation of Crop Biomass in APSIM Winter Wheat

TRIAL AND ERROR WITH GOODNESS OF FIT- 3 YEARS / 3 LOCATIONS







DAISY WORKSHOP, 5. NOVEMBER 2021 **IRIS VOGELER** 5 OCTOBER 2021

SENIOR RESEARCHER

## Example1: Parameterisation of APSIM Winter Wheat

| Key parameters              | Description                 | Unit                                    | Default values | Calibrated values |
|-----------------------------|-----------------------------|-----------------------------------------|----------------|-------------------|
| verns_sens                  | Phenology related           | -                                       | 1.5            | 4.65              |
| photop_sens                 | Phenology related           | -                                       | 3              | 3.35              |
| tt_end_of_juvenile          | Phenology related           | °Cd                                     | 400            | 490               |
| tt_start_grain_fill         | Phenology related           | °Cd                                     | 545            | 1060              |
| y_extinct_coef              | <b>Biomass accumulation</b> | °Cd                                     | 0.50           | 0.47              |
| y_sla_max                   | Biomass accumulation        | mm <sup>2</sup> g <sup>-1</sup>         | 27000,22000    | 21000, 18000      |
| grain_per_gram_stem         | Grain yield related         |                                         | 25             | 33                |
| potential_grain_growth_rate | Grain yield related         | g grain <sup>-1</sup> day <sup>-1</sup> | 0.001          | 0.011             |
| SOMMiner_Toptimum           | N mineralization            | °C                                      | 22             | 25                |
| y_n_conc_crit_leaf          | N partitioning to leaf      | fraction                                | 0.0035-0.063   | 0.005-0.045       |
| y_n_conc_max_leaf           | N partitioning to leaf      | fraction                                | 0.005-0.07     | 0.035-0.06        |
| y_n_conc_crit_stem          | N partitioning to stem      | fraction                                | 0.0035-0.05    | 0.005-0.045       |
| y_n_conc_max_stem           | N partitioning to leaf      | fraction                                | 0.015-0.07     | 0.01-0.06         |
| y_n_conc_crit_pod           | N partitioning to pod       | fraction                                | 0.0035-0.05    | 0.005-0.045       |
| y_n_conc_max_pod            | N partitioning to leaf      | fraction                                | 0.015-0.07     | 0.01-0.06         |

#### **Example 1: Effect of Parameterisation of APSIM Winter Wheat** *Yield and N uptake*







## Example 2: Parameterisation of Crop Phenology in APSIM Barley

factorial based parameterisation, 2 steps for different growth stage, 4 locations, 5 years Kumar et al. (2021)

#### calibrated parameters

| Variety                       |        |        |         |       |          |        |        |       |           |        |       |        |
|-------------------------------|--------|--------|---------|-------|----------|--------|--------|-------|-----------|--------|-------|--------|
| Parameter                     | Alvari | Anneli | Aukusti | GN100 | 63 Judit | Kaarle | Kannas | Rodhe | tteSeveri | Vertti | Vilde | Vilgot |
| Calibration 1_AN              |        |        |         |       |          |        |        |       |           |        |       |        |
| photop_sens                   | 1      | 1      | 0       | 0     | 0        | 1      | 0      | 1     | 1         | 0      | 0     | 0      |
| vern_sens                     | 0      | 0      | 1       | 0.5   | 1        | 0      | 0      | 0     | 0         | 0.5    | 0     | 0.5    |
| tt_end_of_juvenile<br>(°Cd)   | 300    | 300    | 200     | 200   | 200      | 300    | 300    | 300   | 300       | 200    | 300   | 300    |
| tt_floral_initiation<br>(°Cd) | 320    | 320    | 300     | 320   | 300      | 320    | 320    | 320   | 300       | 320    | 320   | 300    |
| tt_start_grain_fill<br>(°Cd)  |        |        |         |       |          |        |        |       |           |        |       |        |
| RMSE (d)                      | 1.3    | 0.7    | 0       | 1     | 0.4      | 0.7    | 0      | 0.7   | 2         | 0.8    | 0     | 0      |
| Calibration 2_PM              |        |        |         |       |          |        |        |       |           |        |       |        |
| photop_sens                   | 6      | 1      | 0       | 3     | 1        | 3      | 1      | 6     | 0         | 6      | 0     | 0      |
| vern_sens                     | 0      | 0      | 0.5     | 0     | 0        | 0      | 0      | 0     | 0.5       | 0      | 0.5   | 0.5    |
| tt_end_of_juvenile<br>(°Cd)   | 250    | 300    | 200     | 200   | 200      | 350    | 300    | 300   | 250       | 250    | 300   | 250    |
| tt_floral_initiation<br>(°Cd) | 300    | 320    | 300     | 320   | 300      | 300    | 320    | 320   | 300       | 300    | 320   | 300    |
| tt_start_grain_fill<br>(°Cd)  | 525    | 525    | 575     | 625   | 575      | 550    | 575    | 550   | 575       | 525    | 500   | 575    |
| RMSE (d)                      | 4.5    | 3      | 2.2     | 7.5   | 2.5      | 8.6    | 8.2    | 8.5   | 4         | 6.7    | 6     | 3.5    |

- Barley varieties of different maturity bred for short growing seasons in high latitude
- Different thermal time requirements
- important for cultivar selection
- > effect of climate change
- What does this mean for future varieties, are we always one step behind the breeders?

Kumar, U., Morel, J., Bergkvist, G., Palosuo, T., Gustavsson, A.M., Peake, A., Brown, H., Ahmed, M., Parsons, D., 2021. Comparative analysis of phenology algorithms of the spring barley model in APSIM 7.9 and APSIM next generation: A case study for high latitudes. Plants 10, 1-24.

## Example 3: Parameterisation of Maize Cultivars – Breeding Progress

Akhavizadegan et al. (2021)





## **MULTIPLE OBJECTIVE CALIBRATION**

Wöhling et al. (2013)



- to detect structural deficiencies of models
- observations on at least one state variable in the soil compartment (soil moisture), one variable describing plant development (LAI), and latent heat flux data (ETa) are required to accurately calibrate soil-plant models.

Wöhling, T., Gayler, S., Priesack, E., Ingwersen, J., Wizemann, H.D., Högy, P., Cuntz, M., Attinger, S., Wulfmeyer, V., Streck, T., 2013. Multiresponse, multiobjective calibration as a diagnostic tool to compare accuracy and structural limitations of five coupled soil-plant models and CLM3.5. Water Resources Research 49, 8200-8221.