

Modelling dynamics interactions between soil structure and soil organic matter storage

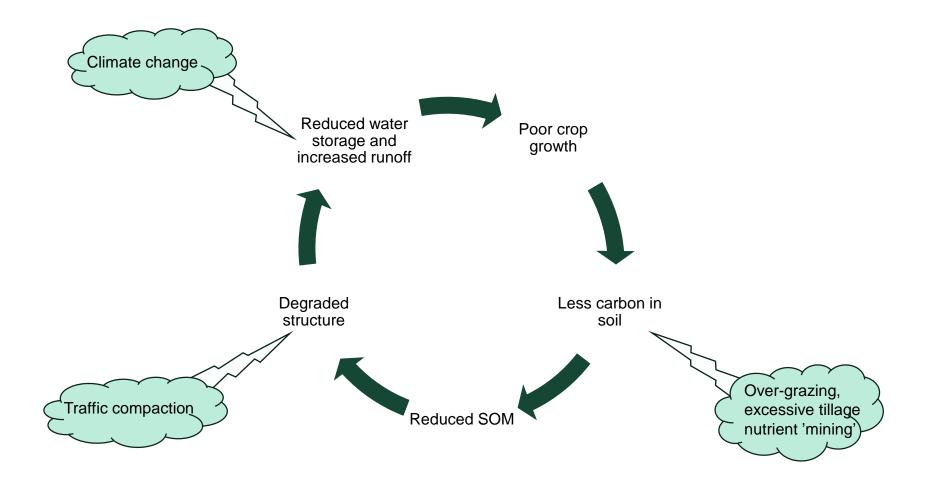
<u>Katharina Meurer</u>, Claire Chenu, Elsa Coucheney, Anke Herrmann, Thomas Keller, Thomas Kätterer, David Nimblad Svensson, Nick Jarvis

> 1st DAISY Workshop University of Copenhagen 2021-11-05

Soil degradation

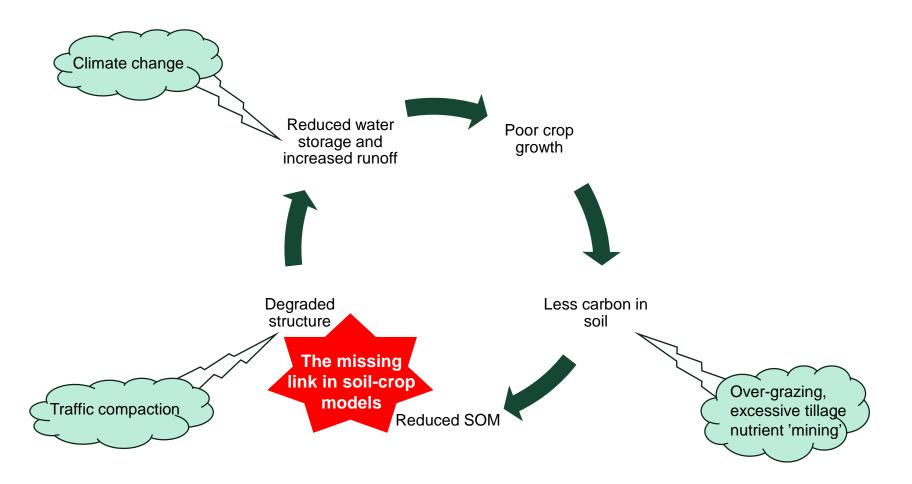
- "the decline in soil quality caused through its misuse by humans"¹
- every year, 12 million hectares are lost worldwide because of soil degradation²
 - considered a global threat
- determined by soil structure, i.e. the spatial arrangement and stability of soil solids and pore space³
 - controls all key soil processes, e.g. air and water movement, microbial activity, carbon and nitrogen cycling, root growth⁴

¹ Lal & Stewart (1990) Soil degradation: A global threat. In: R Lal & BA Stewart, Advances in Soil Sciences, Volume 11, Soil Degradation, Springer-Verlag

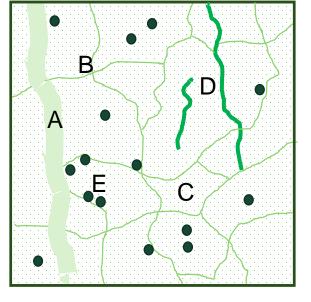

² FAO/ITPS. 2015. FAO/ITPS, Rome, Italy

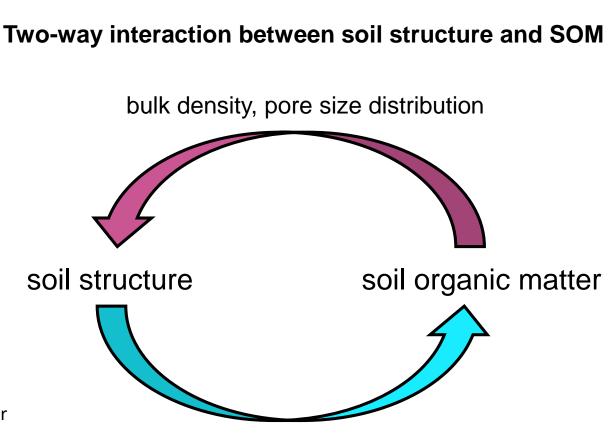
³ Dexter, A (1988) Advances in characterization of soil structure. Soil & Till. Res., 11, 199-238.

⁴ Rabot et al. (2018) Soil structure as an indicator of soil functions: A review. Geoderma, 314, 122-137.

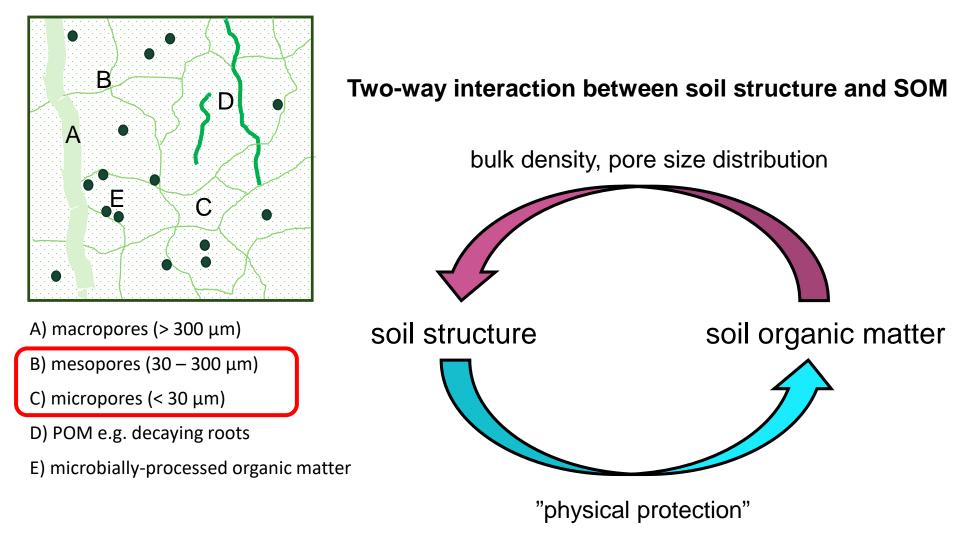


The vicious circles of soil degradation

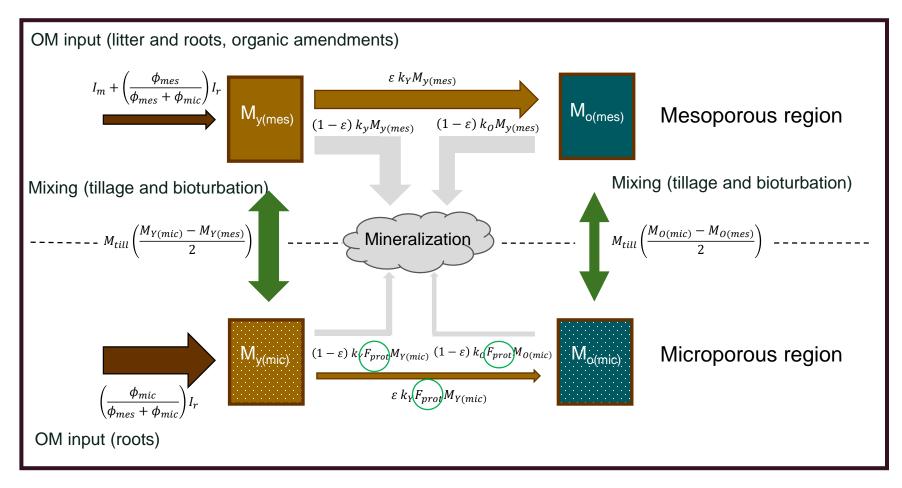

The vicious circles of soil degradation


Dynamic changes in soil hydraulic properties that affect soil water balance, crop growth and soil carbon storage at decadal to centennial time-scales

Coupled modelling of soil organic matter dynamics and soil structure


- A) macropores (> 300 µm)
- B) mesopores (30 300 μ m)
- C) micropores (< 30 µm)
- D) POM e.g. decaying roots
- E) microbially-processed organic matter

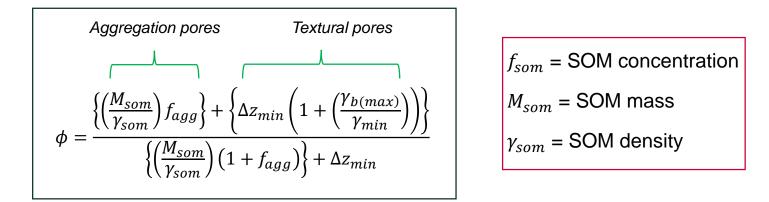
"physical protection"



Coupled modelling of soil organic matter dynamics and soil structure

The influence of soil structure on SOM turnover and storage (extended ICBM model¹)

¹Andrén, O., Kätterer, T. 1997. ICBM: the introductory carbon balance model for exploration of soil carbon balances. Ecological Applications, 7, 1226-1236.



Modelling dynamics in soil structure

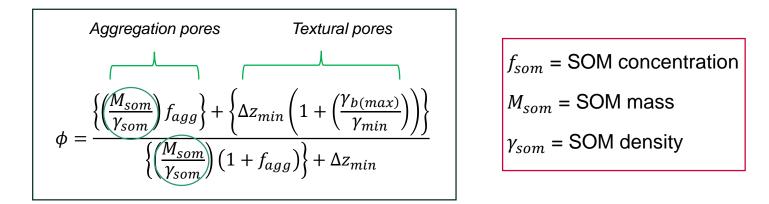
Soil bulk density

$$\gamma_{b} = \frac{\gamma_{b(max)}}{\left\{ \left(\frac{\gamma_{b(max)}}{\gamma_{som}} \right) \left(1 + f_{agg} \right) f_{som} \right\} + (1 - f_{som})}$$

Total porosity

Microporosity

$$\phi_{mic} == \frac{\left\{ \left(M_{Y(mic)} + M_{O(mic)} \right) \left(\frac{f_{agg}}{\gamma_{som}} \right) \right\} + f_{text(mic)} \left\{ \Delta z_{min} \left(1 - \left(\frac{\gamma_{b(max)}}{\gamma_{min}} \right) \right) \right\}}{\left\{ \left(\frac{M_{som}}{\gamma_{som}} \right) \left(1 + f_{agg} \right) \right\} + \Delta z_{min}}$$



Modelling dynamics in soil structure

Soil bulk density

$$\gamma_{b} = \frac{\gamma_{b(max)}}{\left\{ \begin{pmatrix} \frac{\gamma_{b(max)}}{\gamma_{som}} \end{pmatrix} \left(1 + f_{agg} \right) f_{som} \right\} + (1 - f_{som})}$$

Total porosity

Microporosity

$$\phi_{mic} == \frac{\left\{ \left(M_{Y(mic)} + M_{O(mic)} \right) \begin{pmatrix} f_{agg} \\ \gamma_{som} \end{pmatrix} \right\} + f_{text(mic)} \left\{ \Delta z_{min} \left(1 - \left(\frac{\gamma_{b(max)}}{\gamma_{min}} \right) \right) \right\}}{\left\{ \left(\frac{M_{som}}{\gamma_{som}} \right) \left(1 + f_{agg} \right) \right\} + \Delta z_{min}}$$

Testing the model

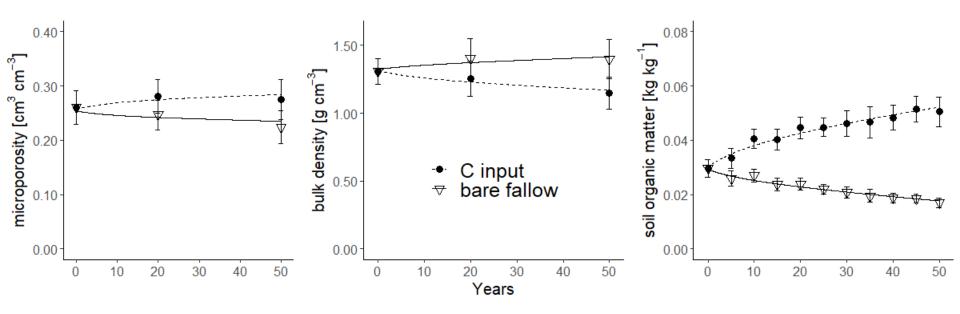
1. Sensitivity analysis

 f_{som} = SOM concentration γ_b = soil bulk density f_{mic} = fraction of micropores

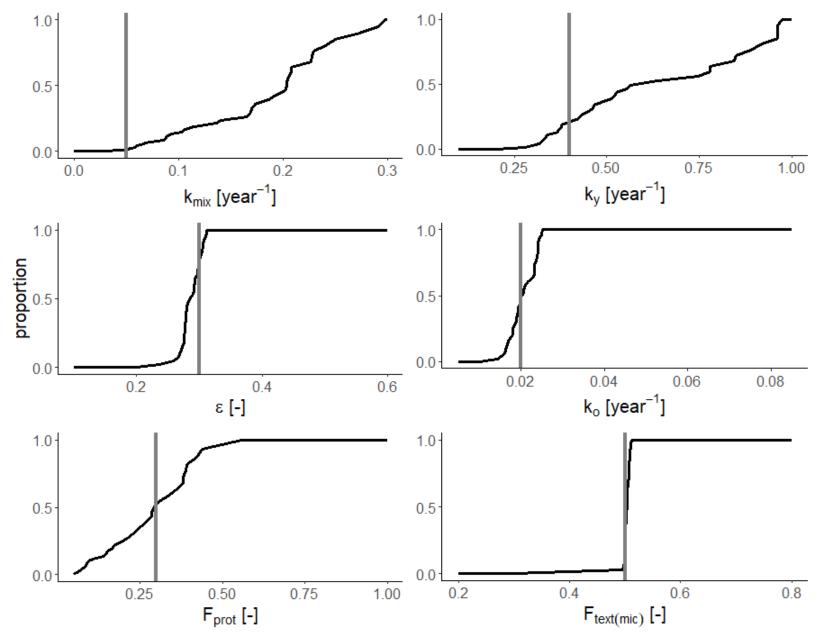
Parameter	Sampled range	Partial correlation coefficients, r		
		f _{som}	Ύb	f _{mic}
1 st order rate coefficient, k_y [year ⁻¹]	0.1 - 1.0	-0.54	0.37	-0.10
1 st order rate coefficient, k_o [year ⁻¹]	0.01 - 0.05	-0.82	0.70	0.32
Physical protection factor, <i>F</i> _{prot} [-]	0.05 - 0.20	-0.46	0.28	-0.08
OM Retention coefficient, ε [-]	0.1 - 0.5	0.92	-0.82	-0.30
Mixing coefficient, k_{mix} [year ⁻¹]	0 - 0.2	-0.68	0.50	-0.60
Fraction of textural micropores, F _{text(mic)} [-]	0.5 - 0.9	0.24	-0.16	0.96
Density of mineral matter, γ_{min} [g cm ⁻³]	2.6 - 2.7	-0.09	0.37	0.01
Density of organic matter, γ_{som} [g cm ⁻³]	1.1 - 1.4	-0.03	0.33	-0.01
Minimum porosity, ϕ_{min} [cm ³ cm ⁻³]	0.3 - 0.4	0.162	-0.85	0.02
Aggregation factor, f_{agg} [-]	2-4	0.0	-0.50	0.02

Testing the model

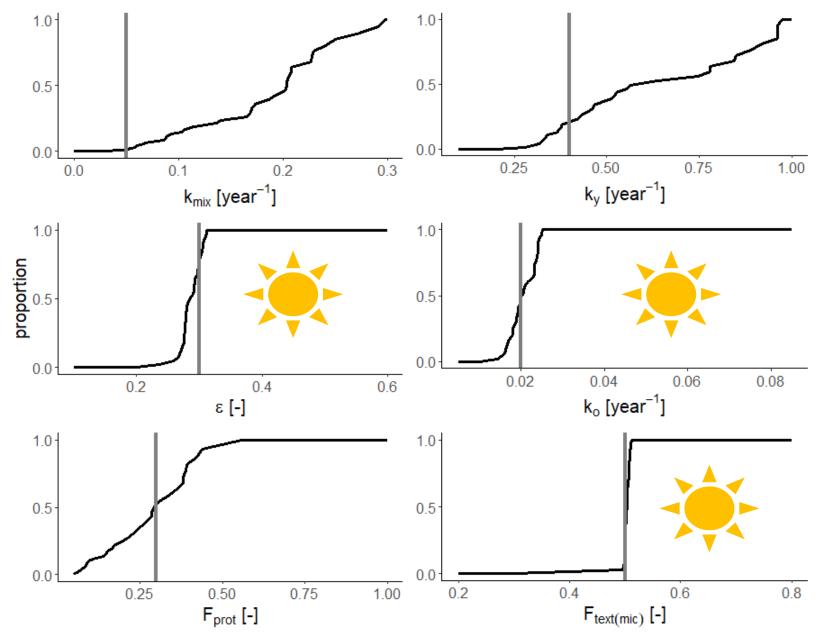
- 1. Sensitivity analysis
- 2. Parameter identifiability
 - Created synthetic data by running the model for 50 years given two scenarios with different
 OM inputs: (i) no input (bare fallow), (ii) constant input of 0.06 g cm⁻² year⁻¹


Testing the model

- 1. Sensitivity analysis
- 2. Parameter identifiability
 - Created synthetic data by running the model for 50 years given two scenarios with different


OM inputs: (i) no input (bare fallow), (ii) constant input of 0.06 g cm⁻² year⁻¹

Parameters	Value used for data generation (true value)	Sampled range during calibration
1 st order rate coefficient, k _y [year-1]	0.40	0.1 – 1.0
1 st order rate coefficient, k _o [year ⁻¹]	0.02	0.005 – 0.1
Mixing coefficient, k _{mix} [year ¹]	0.05	0-0.3
Microbial efficiency, ε [-]	0.3	0.1 – 0.6
Physical protection factor, F _{prot} [-]	0.3	0.05 – 1.0
Fraction of textural micropores, F _{text(mic)} [-]	0.5	0.2 - 0.8
Density of mineral matter, γ_{min} [g cm ⁻³]	2.7	
Density of organic matter, γ_{som} [g cm ⁻³]	1.2	
Minimum layer thickness, $\Delta z_{(min)}$ [cm]	16	
Minimum porosity, ϕ_{min} [cm ³ cm ⁻³]	0.4 ^{a)} /0.41 ^{b)}	
Aggregation factor, f _{agg} [-]	5.0 ^{a)} /4.92 ^{b)}	


Testing the model – parameter identifiability

Testing the model – parameter identifiability

Testing the model – parameter identifiability

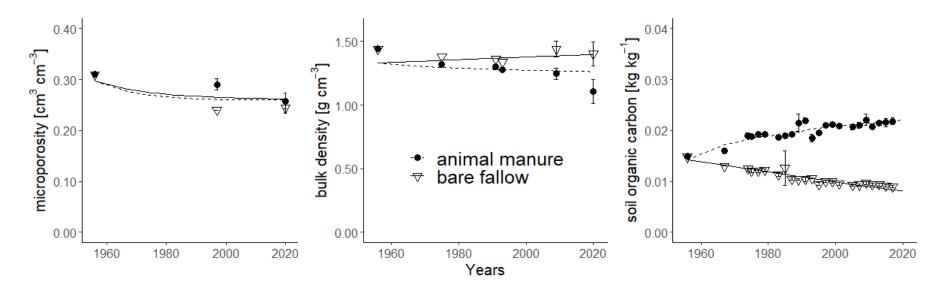
Application to the Ultuna long-term "frame" trial

RAM-56 Organic matter trial

Treatment	Mineral fertilizer [kg N ha ⁻¹ yr ⁻¹]	Organic material [t C ha ⁻¹] *
bare fallow (A)	0	0
No-N (B)	0	0
$Ca(NO_3)_2$ (C)	80	0
$(NH_4)_2 SO_4 (D)$	80	0
kkv (E)	80	0
straw (F)	0	4
straw (G)	80	4
green manure (H)	0	4
peat (I)	0	4
animal manure (J)	0	4
animal manure (K)	0	4
saw dust (L)	0	4
peat (M)	80	4
saw dust (N)	80	4
sewage sludge (O)	0	4
* applied every other year		

Application to the Ultuna long-term "frame" trial

RAM-56 Organic matter trial



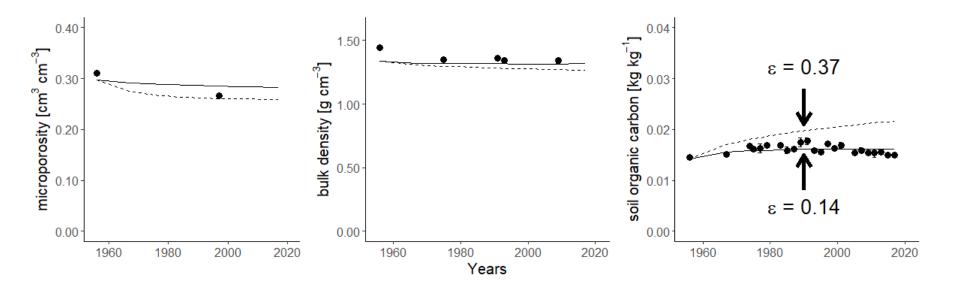
Treatment	Mineral fertilizer [kg N ha ⁻¹ yr ⁻¹]	Organic material [t C ha ⁻¹] *
bare fallow (A)	0	0
No-N (B)	0	0
$Ca(NO_3)_2(C)$	80	0
$(NH_4)_2 SO_4 (D)$	80	0
kkv (E)	80	0
straw (F)	0	4
straw (G)	80	4
green manure (H)	0	4
peat (I)	0	4
animal manure (J)	0	4
animal manure (K)	0	4
saw dust (L)	0	4
peat (M)	80	4
saw dust (N)	80	4
sewage sludge (O)	0	4
* applied every other year		

SLU

Application to the Ultuna long-term "frame" trial

Parameter	Value	Variation
1 st order rate coefficient, k_o (year ⁻¹)	0.036	0.031 - 0.039
OM retention coefficient, ϵ	0.37	0.35 – 0.39
OM input spin-up (g cm ⁻² year ⁻¹)	0.0064	0.0061 - 0.0066
Fraction of textural micropores, $f_{text(mic)}$	0.85	0.84 – 0.87

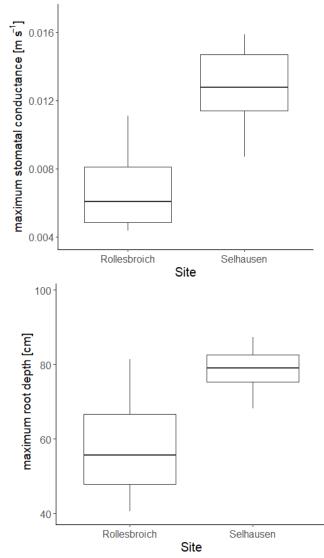
Data from:


Kirchmann, H. et al., 1994. Dept. Soil Sciences, Reports and Dissertations 17, Swedish University of Agricultural Sciences, Uppsala, Sweden. Gerzabek, M., et al., 1997. European Journal of Soil Science, 48, 273-282.

Kirchmann, H., Gerzabek, M. 1999. Journal of Plant Nutrition and Soil Science, 162, 493-498.

Kätterer, T., et al., 2011. Agriculture, Ecosystems and Environment, 141, 184-192.

Predictions for the green manure treatment


Outlook and plans

- A promising approach to model the interactions between SOM storage and turnover and soil structure
- Ongoing and future model development
 - Physical processes (e.g. swell/shrink, freeze/thaw)
 - Coupling to modules for soil hydrology and plant growth
 - Integration within an overall soil-crop modelling framework?

Ongoing and future work

- Increased frequency of severe drought will impact many important agricultural regions of the world
- Strong interaction between soil water status and plant growth hardly covered by models
 - TERENO SOILCan (lysimeter) network
 - Rhine valley (Germany): Rollesbroich (wetter) and Selhausen (drier)
 - Coupling hydrological processes and grassland production in two contrasting climates (Jarvis et al. under review)
- Greater stomatal conductance, increase in dry matter allocation below-ground and larger maximum root depth in drier climate
- Plant plasticity (adaptation) introduced significant additional uncertainties into model predictions of crop growth in response to climate change

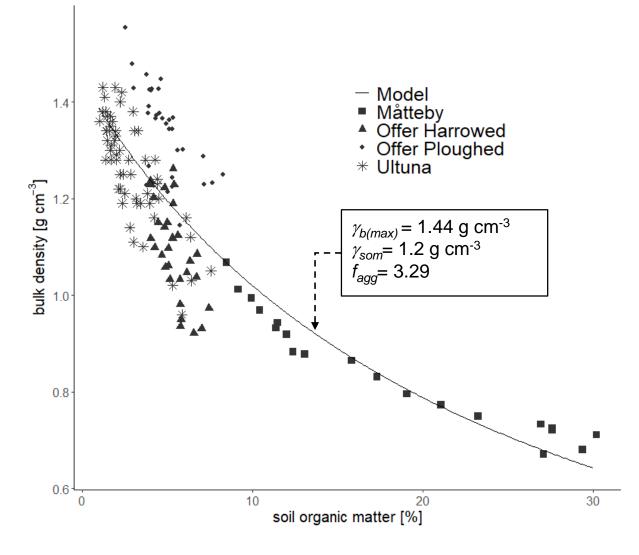
Ongoing and future work

- ➤ 3 internal projects:
 - MixRoot and MaxRoot
 - Effect of root systems on carbon flow and organic matter accumulation in European agricultural soils
 - EnergyLink
 - Linking crop diversification to microbial energy allocation and organic carbon storage in soils
- Field experiment on the impacts of drought on grassland production and SOC stocks in a future climate (Uppsala, Sweden)

Thank you for your attention!

FORMAS

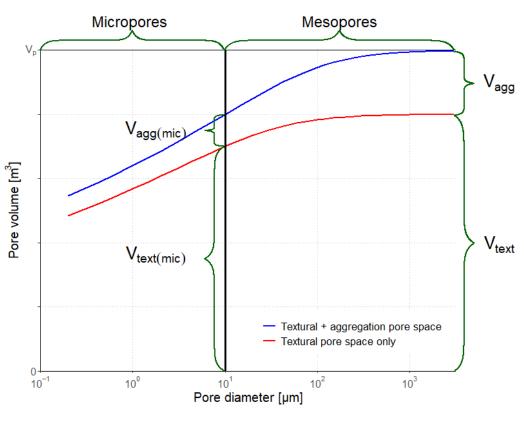
Research project:


"Soil structure and soil degradation: improved model tools to meet sustainable development goals under climate and land use change"

A multi-disciplinary approach, integrating all relevant disciplines:

- > Soil physics/mechanics, biogeochemistry, ecology
- > Hydrology
- Crop science
- Socio-economics

Coupled modelling of soil organic matter dynamics and soil structure



Data from:

Kirchmann et al. (1994) Dept. Soil Sciences, Reports and Dissertations 17, Swedish University of Agricultural Sciences, Uppsala, Sweden. Gerzabek et al. (1997) European Journal of Soil Science, 48, 273-282. Kirchmann & Gerzabek (1999) Journal of Plant Nutrition and Soil Science, 162, 493-498. Kätterer et al. (2011) Agriculture, Ecosystems and Environment, 141, 184-192. Larsbo et al. (2016) Vadose Zone Journal, doi:10.2136/vzj2016.03.0021.

¹Emerson, W., McGarry, D. 2003. Australian Journal of Soil Research, 41, 107-118 ²Boivin, P., et al. 2009. European Journal of Soil Science, 60, 265-275 ³Johannes A., et al. 2017. Geoderma, 302, 14-21.

The total soil pore volume comprises a constant volume of "textural pores" and an aggregation pore volume, V_{agg}, which is assumed to be a linear function of the volume of stored organic matter¹⁻³

$$V_{agg} = f_{agg} \left(\frac{M_{som}}{\gamma_{som}} \right)$$

$$V_{text} = \Delta z_{min} \left(1 + \left(\frac{\gamma_{b(max)}}{\gamma_{min}} \right) \right)$$

The textural porosity is partitioned between the micropores and mesopores (as a function of the particle size distribution)

Testing the model – sensitivity analysis

- > 500 simulations over a period of 2000 years (each)
 - > Different parameter values obtained by Latin hypercube sampling
- → How are the targeted outputs (f_{som} , γ_b , f_{mic}) influenced by parameter changes?
 - > Partial rank correlation coefficients

Parameter	Sampled range	Partial correlation coefficients, r		
		fsom	Ύb	f _{mic}
1 st order rate coefficient, k_y [year ⁻¹]	0.1 - 1.0	-0.54	0.37	-0.10
1 st order rate coefficient, k_o [year ⁻¹]	0.01 - 0.05	-0.82	0.70	0.32
Physical protection factor, <i>F</i> _{prot} [-]	0.05 - 0.20	-0.46	0.28	-0.08
OM Retention coefficient, ε [-]	0.1 - 0.5	0.92	-0.82	-0.30
Mixing coefficient, k_{mix} [year ¹]	0 - 0.2	-0.68	0.50	-0.60
Fraction of textural micropores, F _{text(mic)} [-]	0.5 - 0.9	0.24	-0.16	0.96
Density of mineral matter, γ_{min} [g cm ⁻³]	2.6 - 2.7	-0.09	0.37	0.01
Density of organic matter, γ_{som} [g cm ⁻³]	1.1 - 1.4	-0.03	0.33	-0.01
Minimum porosity, ϕ_{min} [cm ³ cm ⁻³]	0.3 - 0.4	0.162	-0.85	0.02
Aggregation factor, f_{agg} [-]	2-4	0.0	-0.50	0.02

Testing the model – parameter identifiability

Sensitive parameters are not necessarily identifiable in a calibration procedure,

since their effects on the target outputs may be correlated

- Created synthetic data by running the model for 50 years given two scenarios with different OM inputs:
 - \succ (i) no input (bare fallow), (ii) constant input of 0.06 g cm⁻² year⁻¹
 - Outputs: SOM concentration (every 5th year), bulk density and microporosity (at three occasions)
- > Stella-internal calibration method (Powell) to check if the parameters can be identified

Parameters	Value used for data generation (true value)	Sampled range during calibration
1 st order rate coefficient, k _y [year-1]	0.40	0.1 – 1.0
1 st order rate coefficient, k _o [year ⁻¹]	0.02	0.005 – 0.1
Mixing coefficient, k _{mix} [year ⁻¹]	0.05	0 – 0.3
Microbial efficiency, ε [-]	0.3	0.1 – 0.6
Physical protection factor, F _{prot} [-]	0.3	0.05 – 1.0
Fraction of textural micropores, F _{text(mic)} [-]	0.5	0.2 – 0.8
Density of mineral matter, γ_{min} [g cm ⁻³]	2.7	
Density of organic matter, γ_{som} [g cm ⁻³]	1.2	
Minimum layer thickness, $\Delta z_{(min)}$ [cm]	16	
Minimum porosity, ϕ_{min} [cm ³ cm ⁻³]	0.4 ^{a)} /0.41 ^{b)}	
Aggregation factor, f _{agg} [-]	5.0 ^{a)} /4.92 ^{b)}	