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4 Water flow in soils 

4.1 Introduction 
The water flow model simulates soil water content, soil water potential, vertical 

and, potentially, horizontal water flow in the soil, and water flow towards roots, 

biopores, and drains.  

It is a basic assumption that water flow in the unsaturated zone can take place as 

Darcy flow within the soil matrix (calculated with Richard’s equation (section 4.3) 

between numerical grid cells (section 4.10)) or as gravity flow in distinct 

macropores (biopore flow). Other forms of preferential flow, e.g., finger flow, are 

not considered. Hence, Daisy considers two flow regimes: a matrix regime (section 

4.3) and a biopore regime (section 4.7). Additionally, matrix water can be divided 

into two subdomains to improve the description of the solute movement (chapter 

6).  

In this chapter, the build-up of a soil column is described first, as the column is a 

requirement for the hydraulic calculations. This is followed by a description of the 

processes included and the most used parameterisations available in Daisy. 

Particularly the number of hydraulic functions to describe retention curves and 

hydraulic conductivity is large and the ones not included in this chapter can be 

found in Appendix 4.1.  

4.2 A soil column 
A soil column can be either 1-dimensional (1D) or 2-dimensional (2D). In a 1D soil 

column only vertical water flow is simulated, whereas in a 2D soil column both 

vertical and horizontal water flow are simulated. The soil column extent from the 

soil surface (upper boundary, section4.4.1) and to a user defined depth (typically 

2-3 meter below the soil surface), defining the exchange with groundwater (lower 

boundary, section4.4.2), see Figure 4.1. 

 

Figure 4.1. A soil column with horizons and examples of discretisation in 1 and 2 dimensions. 



4.2.1 Soil horizons 
The soil column consists of a user specified number of horizons (typically at least 3 

e.g., an A-, B- and C-horizon). The start and end depth of the soil horizons are user 

defined. The properties of a soil horizon are considered homogeneous and static 

with regards to soil texture and hydraulic properties. The horizon has a range of 

properties required for calculating the flow of water, solute and heat, and the 

organic matter dynamics. For the water flow in soil, the most important 

properties are the soil texture, humus content, the dry bulk density, and the 

selected hydraulic process description with parameters (if the parameters are not 

generated by a pedotransfer function) (see section 4.5.1)). Please note, that there 

are many different systems for definition of soil texture, and it is important to 

know which one was used for the soils to be simulated. Daisy is able to handle the 

texture classification systems listed in Table 4.1. 

Table 4.1: Textural classification schemes supported by Daisy. All numbers are μm.  

 

In addition to texture, the fraction of chalk can be specified, as well as the fraction 

of “other”, typically larger mineral components (stones, pebbles). Daisy will ignore 

this fraction, but it can be included to ensure the sum is 1.0. The normalize 

parameter is by default false, but if set to true Daisy will normalize the mineral 

fractions of the soil to 1. The dry bulk density [g cm-3] is calculated from the soil 

constituents based on the soil porosity and particle density of the specified soil 

particles, or can be specified by the user. If calculated, the assumed bulk density 

of minerals, humus and chalk are 2.65, 1.3 and 1.6 [g cm-3], respectively (hard 

coded in texture.C). 

4.2.2 Discretisation 
The calculation of water flow in a 1D-column takes place between vertically 

aligned calculation nodes (Figure 4.1), which are the centre points of grid cells, 

and only vertical gradients are simulated. For 2D-simulations, grid cells with 

calculation nodes must be defined in both vertical and horizontal direction.  

Texture 
class/ 
Texture 
classification 
scheme  

Clay 

Silt Sand 

Fine Medium Coarse 
Fine 

Medium 
Coarse 

Very 
Fine 

Fine Coarse 
Very 

Coarse 
MIT3, DIN3, 
BSI3 

<2 2-60 60-2000 

MIT7, BSI7 <2 2-6 60-200 20-60 60-200 200-600 600-2000 

DIN5 <2 2-60 60-200 200-600 600-2000 

ISSS3 <2 2-20 20-2000 

ISSS4 <2 2-20 20-200 200-2000 

FAO3, USDA3 <2 2-50 50-2000 

FAO7, USDA7 
<2 2-50 50-100 100-250 250-500 

500-
1000 

1000-
2000 

USPRA3 <5 5-50 50-2000 

USPRA4 <5 5-50 50-250 250-2000 



The discretization can be user defined. In the 1D-column, it is defined with the 

array zplus [cm], while the discretization of the 2D soil column must be user 

specified with the arrays zplus [cm] and xplus [cm]. The specification is done using 

the Geometry function, from top to bottom and left to right, respectively. 

For the 1D-column, the user can also choose to let the model create a 

discretization. The automatic discretization is guided by several rules: 

• There must be a division at each soil horizon boundary and for each specified 

boundary for logging. 

• A horizon should preferably be divided into three calculation layers (but the 

automatic scheme gives an error message if layers become less than 1 cm 

high). 

• For cells with the top between 0 and 5 cm depth, the default cell height is 2.5 

cm. 

• For cells with the top between 5 and 10 cm, the default cell height is 5 cm. 

• For cells with the top between 10 cm and (rooting depth-50 cm), the default 

cell height is 10 cm. 

• Below this depth, the default cell height is 20 cm, but this is generally 

overruled by a maximum cell height of “2*dispersivity”, as the default value 

for dispersivity is 5 cm. 

• If the space between fixed boundaries does not allow cells of the default size, 

the cells are reduced to fit the size. 

Except in the top layers, integer values for depth are used, as far as possible. The 

result of the automatic discretisation is recorded in the Daisy logfile. 

4.3 Water flow in the matrix soil 
It is a basic assumption in Daisy that water flow in the unsaturated zone can take 

place as Darcy flow within the soil matrix or as gravity flow in distinct macropores. 

Water flow in the soil matrix is described with Richards equation (Richards, 1931), 

both in 1D (eq. 1) and 2D (eq. 3):  

𝜕𝜃

𝜕𝑡
=
𝜕

𝜕𝑧
(𝐾𝑧(ℎ)

𝜕ℎ

𝜕𝑧
) + Γ𝑅𝑊𝑈 + Γ𝐷𝐹 + Γ𝐵𝐹 (1) 

where  

𝜃  = the volumetric water content [cm3 cm-3] 

t  = time [h] 

z  = the vertical spatial coordinate 

h  = pressure head [cm] 

𝐾𝑧 = the hydraulic conductivity in the z-direction as a function of h [cm h-1], and  

Γ𝑅𝑊𝑈, Γ𝐷𝐹 and Γ𝐵𝐹 [cm3 cm-3 h-1] are source-sink terms representing root water 

uptake (RWU, section4.8), drain water flow (DF, section4.6) and biopore 

water flow (BF, section4.7), respectively.  

Manual discretisation 

Automatic discretisation 

Richards Equation 1D 



A solution to Richard’s equation requires knowledge of a relation between θ and 

h, i.e. a soil water characteristic or retention curve, and knowledge of the relation 

between K and h or θ, i.e. the hydraulic conductivity function. Several models for 

these relations have been proposed in literature and several of these are available 

as submodels in Daisy, see section 4.5 and Appendix 4.1. 

Richard’s equation is solved numerically in the mixed formulation (Celia et al., 

1990), see section 4.10. The upper boundary condition is determined internally by 

Daisy (see section 4.4.1 and Chapter 3). It may be constituted by a pressure 

condition when ponding occurs, or a flux condition in all other circumstances. The 

lower boundary is selected by the user (section 4.4.2. The following conditions are 

implemented: a pressure condition (known position of the groundwater), gravity 

flow (deep groundwater), and a lysimeter boundary condition. A special case of a 

pressure condition is implemented, viz. a pipe drain condition (see below). 

If the numeric solution to Richards Eq. does not converge within a specified 

number of iterations, a simplified model is used. In the simplified model (termed 

lr in Daisy) water movement (both upwards and downwards) down to z_top 

(default -10 [cm]) is calculated with the Darcy Equation:  

𝑞 = −𝐾𝑧 (
𝜕ℎ

𝜕𝑧
+ 1) (2) 

Below z_top only gravitational water movement in wet soil is accounted for. Wet 

soil is defined as soil with a pressure head above field capacity (termed h_fc in 

Daisy with a default of -100 cm).   

Richards Equation in 2D considers both vertical (z-direction) and horizontal (x-

direction) water flow:  

𝜕𝜃

𝜕𝑡
= ∇ ∙ (𝑲(ℎ)∇(ℎ + 𝑧)) + Γ𝑅𝑊𝑈 + Γ𝐷𝐹 + Γ𝐵𝐹 (3) 

where K(h) is the hydraulic conductivity tensor, and h is the potential head. The x-

axis is chosen in horizontal direction and the z-axis is positive upwards. The 

conductivity tensor can be expressed as:  

𝑲 = [
𝐾𝑥𝑥 𝐾𝑥𝑧
𝐾𝑧𝑥 𝐾𝑧𝑧

] 

For a model with rectangular cells, we have chosen that the principal directions of 

the anisotropic medium are parallel to the x- and z-axis, i.e.  

𝑲 = [
𝐾𝑥𝑥 0
0 𝐾𝑧𝑧

] 

The hydraulic conductivities have the unit [cm h-1]. 

The 2D Richard’s Equation (Eq. 3) is solved numerically with a finite volume 

solution (Mollerup and Hansen, 2007) (section 4.10). If the numeric solution to 

the equation does not converge within the prescribed number of iterations, the 

lr model 

Richards Equation 2D 



model issues a warning and adopts a simplified water model (v+h). If the v+h-

model does not converge a steady-state water flow model (const) is applied.  

In the v+h-model, water flow is, in principle, calculated in two steps, first 

vertically and then horizontally. However, the default setting for horizontal water 

flow in the v+h-model is none. Vertical water flow is then calculated with the 1D 

Richards Equation (Eq. 1).  

In the steady-state water flow model const a constant water flow in horizontal 

and vertical direction is assumed. The flow is defined by q_x [cm h-1] and q_z [cm 

h-1], both with default values of 0. The sink terms are, however, still active in both 

models. 

4.4 Boundary conditions 
The characteristics of the boundaries of the simulated domain in Daisy vary 

depending on their position.  

The side-boundaries are defined as no-flow boundaries, whereas the top 

boundary is defined by the surface processes (Chapter 3) and the bottom 

boundary can be defined with either free drainage, a fixed or fluctuating 

groundwater table or pressure, an aquitard, or a lysimeter boundary.  

4.4.1 The top boundary 
The upper boundary condition depends on the conditions at the surface (Chapter 

3). The three following situations are implemented:  

• A specified flux in or out of the soil surface (Neuman condition) 

• A specified potential at the soil surface (Dirichlet condition)  

• A specified flux at a specified depth (Neuman condition)  

The first boundary condition specified is used when rain, irrigation or melting 

snow causes infiltration that does not exceed the infiltrability of the soil 

(downwards) or when evaporation takes place from the surface (upwards, section 

3.3). If the amount of water available for infiltration is positive, but less than the 

infiltrability of the soil, the amount of available water determines the flux. If no 

water is available for infiltration, the dominating process is evaporation. The 

actual soil evaporation is either given by the potential evaporation from the soil 

surface [mm h-1] or by the rate at which soil water can be transported to the soil 

surface, 𝐽𝑤,𝑆𝑜𝑖𝑙_𝑒𝑥𝑓 [mm h-1] (Eq. 3.38). The soil exfiltration rate is determined as:  

𝐽𝑤,𝑆𝑜𝑖𝑙_𝑒𝑥𝑓 = 
𝐾

𝐶𝜃
[
𝜕𝜃

𝜕𝑧
]
𝑧=0

 (4) 

where: 

K   = the hydraulic conductivity of the soil 

𝐶𝜃 = the specific water capacity =
𝑑𝜃

𝑑ℎ
 and  

The gradient 
𝜕𝜃

𝜕ℎ
 is estimated on the assumption that θ = 0 at z = 0. 

v+h model 

const model 

Side boundaries: No flow 

Specified flux at soil 

surface (Neuman 

condition) 



The second boundary condition specified is used when water is ponding on the 

soil surface (section 3.2.4). This may occur when rain, irrigation or melting snow 

provides water at a rate which exceeds the infiltrability of the soil.  

The third top boundary condition specified is used when Richards Equation (Eq. 1 

and 33) is not solved for the whole profile. This is often the case when freezing or 

thawing takes place (section 4.9).  

4.4.2 The lower boundary 
The lower boundary can be defined with one of the four following conditions:  

• Free drainage, 

• A groundwater level at constant or varying depth, 

• A specified flux at a specified depth 

• An aquitard in combination with a pressure potential at a specified depth. 

• A lysimeter boundary (seepage face type) 

Free drainage is applied by selecting the “deep” option in Daisy. In this case, the 

flux is equal to the hydraulic conductivity defined by the moisture content of the 

lowest cell. The total hydraulic head gradient is equal to 1. This is also called 

gravitational flow. 

A groundwater depth may be used when the position of the groundwater is 

known. A constant ground water table is defined with the model fixed as a 

negative number below surface. A dynamic groundwater table can be read from a 

file including information of year, month, day, and groundwater height as 

negative numbers below surface. Linear interpolation is used between the 

datapoints.  

A specified flux at a specified depth can be simulated by applying the flux 

groundwater model. With the flux model a constant flux to the groundwater is 

simulated.  

 

Figure 4.2: Schematic representation of the aquitard boundary. Modified from Hansen et al. (2012). 

The aquitard boundary condition allows for both upwards and downwards fluxes 

of water through the aquitard. The water flux over the aquitard is calculated as:  

Specified potential at soil 

surface (Dirichlet 

condition) 

Specified flux in soil 

profile (Neuman 

condition) 

Free drainage 

Groundwater depth 

Flux as a specified depth 

Aquitard 



𝑞𝑎 = 𝐾𝑎
ℎ𝑝 − ℎ𝑎
∆𝑧𝑎

 (5) 

where: 

𝐾𝑎   = the hydraulic conductivity of the aquitard [cm h-1] 

∆𝑧𝑎  = the height of the aquitard [cm] 

ℎ𝑎  = the pressure potential in the aquifer at the interphase between the 

aquitard and the aquifer [cm] (specified as static or dynamic (file), and  

ℎ𝑝  = the pressure head of the last node in the soil column [cm] 

The aquitard option is commonly used in combination with simulation of drain 

pipes, see section 4.6.  

The lysimeter boundary describes a system where saturation, or build up of a 

positive pressure, is required before water will leave the lowest calculation node 

of the column. The flow is determined by the saturated hydraulic conductivity and 

the positive pressure, as the pressure below the column is assumed to be air 

pressure. 

4.5 Hydraulic parameter-functions (HPFs) available in Daisy 
As mentioned above, water calculations require that soil hydraulic properties for 

each horizon are defined by the soil water retention curve, describing the relation 

between soil water content, θ and soil water pressure, h, as well as the hydraulic 

conductivity curve, describing the relation between the hydraulic conductivity, K, 

and h. 

In the following, some of the simple, well known hydraulic submodels (the Brooks 

and Corey (Brooks and Corey, 1964) and the Campbell (Campbell, 1974) retention 

curves in combination with Burdine or Mualem theory, and the Van Genuchten 

retention curve (Van Genuchten, 1980) in combination with Burdine (Burdine, 

1953), Mualem (Mualem, 1976)) are described, together with pedotransfer-

functions providing the required parameters. In Appendix 4.1, the rest of the 

available options are described. This includes the Brunschwick version of the van 

Genuchten retention curve model with Mualem and Tokunga theory for hydraulic 

conductivity (Tokunaga, 2009), (Weber et al., 2019) as well as a range of bimodal 

submodels, tabulated curves, and attempts to include changes over time, such as 

hysteresis and tillage The possibility to supply Daisy with the soil hydraulic 

properties in a tabular form makes it possible to use any model for the SHPs. It 

should also be noted that the architecture of the Daisy code makes it relatively 

easy to add new hydraulic models.  

The expressions for the retention curves developed by Brooks and Corey (1964), 

Campbell (1974), Van Genuchten (1980), and the modified Campbell curve (Smith, 

1992) are shown in Table 4.2 with the following notation:  

Se = effective soil water content [-].  

Sr = relative soil water content [-].  

θs = volumetric soil water content at saturation [cm3 cm-3]. 

Aquitard and drain pipes 

Lysimeter boundary 

Classical soil water 

retention curves 



θr = residual volumetric soil water content [cm3 cm-3]. 

hb = bubling pressure, air-entry value [cm],  

h  = pressure [cm], and 

λ [-], b [-], α [cm-1] and n [-] are shape parameters (pore size index).  

Lastly, it is assumed that 𝑚 = 1 −
1

𝑛
 

Table 4.2: The Brooks and Corey, Campbell, and van Genuchten mathematical descriptions of the soil 
water retention curve. 

Reference Mathematical form Condition Eq. nr.  

Brooks and 
Corey (1964) 𝑆𝑒 =

𝜃 − 𝜃𝑟
𝜃𝑠 − 𝜃𝑟

= (
ℎ𝑏
ℎ
)
𝜆

 
ℎ𝑝 < ℎ𝑏 (6) 

Campbell (1974) 

𝑆𝑟 =
𝜃

𝜃𝑠
= (

ℎ𝑏
ℎ
)

1
𝑏

 

ℎ𝑝 < ℎ𝑏 (7) 

Modified 
Campbell 

𝑆𝑟 = (
𝜃

𝜃𝑠
) =

(

 
 1

(1 + (
ℎ
ℎ𝑏
)
5

)

5𝑏

)

 
 

 

 

ℎ𝑝 < ℎ𝑏 (8) 

Van Genuchten 
(1980) 𝑆𝑒 =

𝜃 − 𝜃𝑟
𝜃𝑠 − 𝜃𝑟

= [
1

1 + |𝛼ℎ|𝑛
]
𝑚

 
ℎ𝑝 < 0 (9) 

 

The description of the soil water retention curves is combined with either Burdine 

or Mualem theory for hydraulic conductivity, see Table 4.3. The Burdine form 

parameter is 2 by default, while the Mualem form parameter is 0.5. However, 

these defaults can be changed, if required, by substituting the “l”-values of 2 or 

0.5 with a different value. The exponent in the Brooks and Corey/Burdine-

hydraulic conductivity calculation: p=(2+3λ)/λ can also be written as 

p=2/λ+(“l”+1), while the exponent for the Mualem solution can be written as: 

p=(2+2.5λ)/λ or p=2/λ+(“l”+2). For the Campbell hydraulic functions, λ is 

exchanged with 1/b.  

For the hydraulic conductivity equations built on van Genuchten retention curves, 

the “l”-values of 2 or 0.5 are exponents on Se in equation 9 and 10 below. 

The equations below all show K as a function of Ks, but alternatively, a K at a 

specified pressure (h) can be given as input. 

For all the hydraulic conductivity models, the saturated hydraulic conductivity [cm 

h-1] in the horizontal direction (Ks,xx) can be scaled relative to the vertical direction 

(Ks,zz) applying an anisotropy [-] factor. The anisotropy factor is by default 1, thus 

Ks is, by default, equally in the horizontal and vertical direction. Otherwise, (Ks,xx) 

= (Ks,zz)  anisotropy.    

 

Anisotropy  
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Table 4.3. Expressions for unsaturated hydraulic conductivity as function of saturated hydraulic 
conductivity, Ks [cm h-1] and the selected retention curve. 

Retention 
curve 

Theory 
Daisy 
model 
name 

Equation Eq. Nr 

Brooks 
and Corey 

Burdine B_BaC 𝐾 = 𝐾𝑠𝑆𝑒
(2+3𝜆)/𝜆 (10) 

Mualem M_BaC 𝐾 = 𝐾𝑠𝑆𝑒
(2+2.5𝜆)/𝜆 (11) 

Campbell 

Burdine B_C 𝐾 = 𝐾𝑠𝑆𝑟
(2+3/𝑏)𝑏 (12) 

Mualem M_C 𝐾 = 𝐾𝑠𝑆𝑟
(2+2.5/𝑏)𝑏 (13) 

Van 
Genuchten 

Burdine B_vG 

𝐾 = 𝐾𝑠𝑆𝑒
2 [1 − (1 − 𝑆𝑒

1
𝑚)

𝑚

] 

𝑚 = 1 −
2

𝑛
 

(14) 

Mualem M_vG 

𝐾 = 𝐾𝑠𝑆𝑒

1
2 [1 − (1 − 𝑆𝑒

1
𝑚)

𝑚

]

2

 

𝑚 = 1 −
1

𝑛
 

(15) 

 

4.5.1 Pedotransferfunctions for HPFs  
Three pedotransfer functions (PTFs) for generation of soil hydraulic properties 

from other soil properties, such as texture and bulk density, are implemented in 

Daisy: Cosby (Cosby et al., 1984), HYPRES (Wösten et al., 1998) and Hypweb 

(Weber et al., 2020). Hypweb is described in Appendix 4.1. 

The Cosby PTF generates the parameters  𝜃𝑠, 𝑘𝑠, ℎ𝑏 and b for the modified 

Campbell retention curve (Eq. 4.8) and the Campbell-Burdine hydraulic 

conductivity curve (Eq. 4.12) based on the clay, silt, and sand [%] fractions:  

 𝜃∗(ℎ) = 0.505 − 0.00142 ∗ 𝑆𝑎 − 0.00037 ∗ 𝐶𝑙 (16) 

Cosby PFT 
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log10(ℎ𝑏) = 1.54 − 0.0095 ∗ 𝑆𝑎 + 0.0063 ∗ 𝑆𝑖 (17) 

1

𝑏
= 3.1 + 0.157 ∗ 𝐶𝑙 − 0.003 ∗ 𝑆𝑎 

 (18) 

 log10(𝐾𝑠) = −5.71 + 0.0126 ∗ 𝑆𝑎 − 0.0064 ∗ 𝐶𝑙 (19) 

where: 

Cl = Clay fraction (< 2 μm) [%], 

Si = Silt fraction (2-50 μm) [%], and  

Sa = Sand fraction (50-2000 μm) [%].  

hb is in [cm water column] and Ks is in [m s-1]. 

The Cobys PTFs are derived based on 1448 soil samples covering a wide variety of 

soil properties.  

The HYPRES PTF generates the parameters, 𝜃𝑠, 𝑘𝑠, 𝛼, 𝑛 and 𝑙, for the van 

Genuchten-Mualem retention curve and hydraulic conductivity curve (Eq. 4.9 and 

4.15) based on clay, silt, organic matter, bulk density and a distinguishes between 

top- and subsoil. The HYPRES PTFs are based on 1777 sample locations with data 

from 4486 soil horizons in Europe. The R2 below the equations express the fit 

between the established pedotransfer function and the measured data.  

 

𝜃𝑠 = 0.7919 + 0.001691 ∙ 𝐶𝑙 − 0.29619 ∙ 𝐷 − 0.000001491 ∙ 𝑆𝑖
2

− 0.0000821 ∙ 𝑂𝑀2 + 0.02427 ∗ 𝐶𝑙−1 + 0.01113
∙ 𝑆𝑖−1 + 0.01472 
∙ ln(𝑆𝑖) − 0.0000733 ∙ 𝑂𝑀 ∙ 𝐶𝑙 − 0.000619 ∙ 𝐷 ∙ 𝐶𝑙
− 0.001183 ∙ 𝐷 ∙ 𝑂𝑀 − 0.0001664 ∙ 𝑡𝑜𝑝𝑠𝑜𝑖𝑙 ∙ 𝑆𝑖 

 (𝑅2 = 76%) 
 

(20) 

𝐾𝑠
∗ = 7.755 + 0.0352 ∙ 𝑆𝑖 + 0.93 ∙ 𝑡𝑜𝑝𝑠𝑜𝑖𝑙 − 0.967 ∙ 𝐷2

− 0.000484 ∙ 𝐶𝑙2 − 0.000322 ∙ 𝑆𝑖2 + 0.001 ∙ 𝑆𝑖−1

− 0.0748 ∙ 𝑂𝑀−1 − 0.643 ∙ ln(𝑆𝑖) − 0.01398 ∙ 𝐷 ∙ 𝐶𝑙
− 0.1673 ∗ 𝐷 ∙ 𝑂𝑀 + 0.02986 ∙ 𝑡𝑜𝑝𝑠𝑜𝑖𝑙 ∙ 𝐶𝑙
− 0.03305 ∙ 𝑡𝑜𝑝𝑠𝑜𝑖𝑙 ∙ 𝑆𝑖 

𝐾𝑠 = 𝑒
𝐾𝑠
∗
    (𝑅2 = 19%) 

 

(21) 

𝛼∗ = −14.96 + 0.03135 ∙ 𝐶𝑙 + 0.0351 ∙ 𝑆𝑖 + 0.646 ∙ 𝑂𝑀 + 15.29 ∙ 𝐷
− 0.192 ∙ 𝑡𝑜𝑝𝑠𝑜𝑖𝑙 − 4.671 ∙ 𝐷2 − 0.000781 ∙ 𝐶𝑙2

− 0.00687 ∙ 𝑂𝑀2 + 0.0449 ∙ 𝑂𝑀−1 + 0.0663
∙ ln(𝑆𝑖) + 0.1482 ∙ ln(𝑂𝑀) −0.04546 ∙ 𝐷 ∙ 𝑆𝑖
− 0.4852 ∙ 𝐷 ∙ 𝑂𝑀 + 0.00673 ∙ 𝑡𝑜𝑝𝑠𝑜𝑖𝑙 ∙ 𝐶𝑙 

𝛼 = 𝑒𝛼
∗
  (𝑅2 = 20%) 

 

(22) 

HYPRES PTF 
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𝑛∗ = −25.23 − 0.02195 ∙ 𝐶𝑙 + 0.0074 ∙ 𝑆𝑖 − 0.1940 ∙ 𝑂𝑀 + 45.5 ∙ 𝐷
− 7.24 ∙ 𝐷2 + 0.0003658 ∙ 𝐶𝑙2 + 0.002885 ∙ 𝑂𝑀2

− 12.81 ∙ 𝐷−1 − 0.1524 ∙ 𝑆𝑖−1 − 0.01958 ∙ 𝑂𝑀−1

− 0.2876 ∙ ln(𝑆𝑖) − 0.0709 ∙ ln(𝑂𝑀) − 44.6 ∙ ln(𝐷)
−  0.02264 ∙ 𝐷 ∙ 𝐶𝑙 + 0.0896 ∙ 𝐷 ∙ 𝑂𝑀 + 0.00718
∙ 𝑡𝑜𝑝𝑠𝑜𝑖𝑙 ∙ 𝐶𝑙 

𝑛 = 𝑒𝑛
∗
+ 1   (𝑅2 = 54%) 

 

(23) 

𝑙∗ = 0.0202 + 0.0006193 ∙ 𝐶𝑙2 − 0.001136 ∙ 𝑂𝑀2 − 0.2316
∙ ln(𝑂𝑀) − 0.03544 ∙ 𝐷 ∙ 𝐶𝑙 + 0.00283 ∙ 𝐷 ∙ 𝑆𝑖
+ 0.0488 ∙ 𝐷 ∙ 𝑂𝑀 

𝑙 = 10 ∙
(𝑒𝑙

∗
− 1)

(1 + 𝑒𝑙
∗
)
 

 (𝑅∗ = 12%) 

(24) 

where: 

Cl  = clay (< 2 μm) [%] 

Si  = silt (0-50 μm) [%] 

OM  = Organic matter [%] 

D  = Bulk density [g cm-3] 

Ks is calculated in [cm d-1], α is in [cm-1] 

Topsoil and subsoil are qualitative parameters having a value of 1 or 0, 

respectively.  

4.6 Water flow to drains 
Waterflow towards drains is calculated with Hooghoudts drainage equation 

(Hooghoudt, 1940) in 1D and with a dynamic drainage model in 2D (Mollerup et 

al., 2014).  

Hooghoudt’s equation is based on several assumptions: Darcy’s law should be 

valid for the water flow, and the soil should be homogeneous, with the specified 

hydraulic conductivities (K1 and K2). An impermeable layer (aquitard) underlies 

the drain at the depth D. The hydraulic gradient at any point is equal to the slope 

of the water table above the point. Recharge, as well as a water depth above the 

drain level in the radial flow zone is neglected.  

 In 1D, when the groundwater table is located above the drain depth, drain flow is 

estimated as: 

𝑞𝑒 =
4𝐾1𝐻

2 + 2𝐾2𝐻𝐷

𝐿Δ𝑥 − Δ𝑥2
 (25) 

where: 

𝑞𝑒  = an equilibrium drain flow [cm m2 m-2 h-1] = [cm h-1], 

𝐾1 = hydraulic conductivity of the saturated soil above drain depth [cm h-1],  

𝐾2 = hydraulic conductivity of the saturated soil between drain depth and the 

aquitard (section 4.4.2), 

Hooghoudts drainage 

equation 
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L  = the horizontal distance between the drains (default: 1800 [cm]) 

Δ𝑥 = the horizontal distance between the simulated soil column and the drain 

[cm], 

H  = the vertical distance between the drain and the groundwater table [cm] and 

D  = is the vertical distance between the drain and the aquitard [cm]. In reality, D 

is substituted by an “equlibrium depth”, which is close to D when D is small 

and less than D, when D is large. Daisy has three models for calculation of D, 

the default being MolenWesseling (van der Molen and Wesseling, 1991). For 

other options, see Appendix 4.2. 

K1 and K2 is estimated as a weight-average of the hydraulic conductivities of 

saturated soil horizons above and below the drain, respectively, calculated as:  

𝐾1 =
∑ 𝑓1,𝑖Δ𝑧𝑖𝐾𝑠,𝑖
𝑁
𝑖=0

𝐻
 (26) 

𝐾2 =
∑ 𝑓2,𝑖Δ𝑧𝑖𝐾𝑠,𝑖
𝑁
𝑖=0

𝐷
 (27) 

where: 

N  = number of numerical layers, 

𝐾𝑠,𝑖  = the saturated conductivity of layer i, 

Δ𝑧𝑖  = the depth of cell i and  

𝑓1,𝑖 and 𝑓2,𝑖 = the saturated fraction of cell i above and below the drain 

respectively.  

The equivalent depth (van der Molen and Wesseling, 1991) is calculated stepwise, 

as shown below: 

 
𝑦 =

2𝜋𝐷

𝐿
 

(28) 

𝑦 < 0.5 => 
𝐹(𝑦) =

𝜋2

4𝑦
+ ln (

𝑦

2𝜋
) 

(29) 

𝑦 ≥ 0.5 => 
𝐹(𝑦) =

4𝑒−2𝑦

1(1 − 𝑒−2𝑦)
+

4𝑒−6𝑦

3(1 − 𝑒−6𝑦)
+

4𝑒−10𝑦

5(1 − 𝑒−10𝑦)

+
4𝑒−14𝑦

7(1 − 𝑒−14𝑦)
+

4𝑒−18𝑦

9(1 − 𝑒−18𝑦)
+ ⋯. 

(30) 

 
𝐷𝑒 =

𝜋𝐿

8(𝐹(𝑦) + 𝑙𝑛 (
𝐿
𝜋𝑟))

 
(31) 

 

r in the last equation is the radius of the drainpipe [cm]. 

The drain option is used with the aquitard boundary condition. It can also be used 

to simulate natural drain lines in the landscape, in which case L is much larger 

than the default value. 
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Drain water flow in 2D is simulated with a dynamic drainage model assuming 

atmospheric pressure (h=0) in the drain cell (Mollerup et al., 2014). Thus, when 

pressure in the surrounding soil increases above saturation (ℎ ≥ 0), the pressure 

in the drain is forced to zero. Water flow to the drain is based on Richard’s 

equation (Eq. 3) and all water flow to drains (both from matrix and through 

biopores (section 4.7) is instantaneously removed from the system, as drains are 

assumed to have an infinite capacity for removing soil water. When the pressure 

in the surrounding soil is below saturation (ℎ < 0), the pressure in the drain cell is 

simulated as for the surrounding soil. 

4.7 Water flow to biopores  
Daisy allows for an advanced and a simple description of biopores, which is also 

called the tertiary domain. The advanced model is described first. 

Biopores in Daisy are simulated as vertically oriented cylindrical tubes, connecting 

the surface or topsoil with drains and/or deeper soil layers. The biopore geometry 

is characterized by a radius, rb, and the depth where the biopore starts, 𝑧𝑏
𝑡𝑜𝑝
, and 

ends, 𝑧𝑏
𝑏𝑜𝑡 , Figure 4.3. Further, the biopores are described as classes of biopores 

with the same geometry and a specified density, 𝐷𝑏(𝑖) [m
2], where i refers to the 

pore class. A column can comprise multiple biopore classes. In a 2D domain, 

specific biopore classes can be restricted to certain areas.   

 

 

Figure 4.3: Radial water flow from the matrix to a biopore, modified from Holbak et al. (2021) 

The pressure head distribution, hb, inside the biopore is assumed to be in 

hydrostatic equilibrium and is a function of the water level inside the biopore. 

However, hb (z) never drops below ℎ𝑡𝑒𝑟𝑚, which is the threshold value for 

termination of water movement from the matrix to the biopores (Holbak et al., 

2021; Tofteng et al., 2002). Thus, hb (z) has a linear distribution between 𝑧𝑏
𝑏𝑜𝑡 and 

ℎ𝑡𝑒𝑟𝑚, with 0 at the bottom for empty biopores and 0 at the water level for 

partially filled biopores: 

ℎ𝑏(𝑧) = {
𝑧0 − 𝑧  𝑖𝑓 𝑧0 − 𝑧 < ℎ𝑡𝑒𝑟𝑚 
ℎ𝑡𝑒𝑟𝑚      𝑖𝑓 𝑧0 − 𝑧 > ℎ𝑡𝑒𝑟𝑚 

 
(32) 

Dynamic drainage model 

Tertiary domain, 

biopores 

Pressure distribution in 

biopores 
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where:  

z0 = water level in the biopore [cm]. For biopores connected to the drainpipe 

𝑧0 is equal to drain depth (section 4.6), 

ℎ𝑡𝑒𝑟𝑚 = the termination threshold for water moving from the matrix to the 

biopore, by default – 30 [cm], and 

𝑧  = the vertical coordinate (0 at the surface and negative downwards) [cm]. 

For all biopores starting at the soil surface, 𝑧𝑏
𝑡𝑜𝑝

= 0, the amount of water 

infiltrating to the biopore from a ponding water layer, 𝑞𝑃𝑜𝑛𝑑,𝑖𝑛𝑓
𝑏 , (section 3.2.4) is 

calculated as:  

𝑞𝑃𝑜𝑛𝑑,𝑖𝑛𝑓
𝑏 = {

0,                           𝑃 ≤ 𝑞𝑃𝑜𝑛𝑑,𝑖𝑛𝑓
𝑚                                                          

𝑃 − 𝑞𝑃𝑜𝑛𝑑,𝑖𝑛𝑓
𝑚 ,   𝑃 > 𝑞𝑃𝑜𝑛𝑑,𝑖𝑛𝑓

𝑚  𝑎𝑛𝑑 𝑃 − 𝑞𝑃𝑜𝑛𝑑,𝑖𝑛𝑓
𝑚 < 𝑞𝑃𝑜𝑛𝑑,𝑖𝑛𝑓

𝑏,𝑚𝑎𝑥

𝑞𝑃𝑜𝑛𝑑,𝑖𝑛𝑓
𝑏,𝑚𝑎𝑥 ,           𝑃 − 𝑞𝑃𝑜𝑛𝑑,𝑖𝑛𝑓

𝑚 > 𝑞𝑃𝑜𝑛𝑑,𝑖𝑛𝑓
𝑏,𝑚𝑎𝑥                                     

 
(33) 

where: 

P  =  precipitation [cm h-1], 

𝑞𝑃𝑜𝑛𝑑,𝑖𝑛𝑓
𝑚  =  infiltration to the soil matrix [cm h-1], and  

𝑞𝑃𝑜𝑛𝑑,𝑖𝑛𝑓
𝑏,𝑚𝑎𝑥  =  the maximum allowed infiltration rate [cm h-1] for a specific biopore 

approximated by Poiseuille’s law assuming only gravity as the driving 

force:  

𝑞𝑃𝑜𝑛𝑑,𝑖𝑛𝑓
𝑏,𝑚𝑎𝑥 =

𝜋𝑟𝑏
4𝜌𝑤𝔤(𝑧0 +𝐻𝑃𝑜𝑛𝑑)

8𝑧0𝜇𝐴𝑏
 (34) 

where: 

𝜌𝑤  = density of water [g cm-3],  

𝔤  = the acceleration of gravity [cm h-2], 

𝐻𝑃𝑜𝑛𝑑 = the height of the ponding layer [cm], 

𝜇  = the dynamic viscosity [g cm-1 h-1], and 

𝐴𝑏  = area of the biopore [cm2]. 

Waterflow from the matrix soil to biopores is activated when the soil matrix is at 

or very close to saturation, at ℎ𝑖𝑛𝑖𝑡, by default = -3 [cm]. It continues until the 

pressure head in the matrix soil drops below the termination threshold, ℎ𝑡𝑒𝑟𝑚. 

However, to secure numerical stability, a certain pressure difference between h 

and hb must be exceeded. By default, this is set to 5 cm (the pressure_barrier 

parameter).  

When calculating the flow from matrix to biopore, the total density of macropores 

(Db,c) is considered and rc,mean is the average radius of the area supplying water to 

a given pore. 

Infiltration from surface 

Waterflow from matrix 

to biopores 
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Waterflow from the matrix to the biopore is described as cylindrical symmetrical 

flow at a given depth, zb (Figure 4.3). For each biopore class the waterflow over 

the matrix biopore interface is calculated as: 

Γ𝐵𝐹
𝐵𝐶𝑖 =

2𝜋𝐷𝑏,𝑐𝐾𝑥(ℎ)(ℎ(𝑧) − ℎ
𝑏(𝑧))

ln(𝑟𝑐,𝑚𝑒𝑎𝑛/𝑟𝑏)
 

 

(35) 

where: 

𝐷𝑏,𝑐 = density in the horizontal plane of biopores assuming the biopores are 

equidistantly placed [cm-2],  

𝐾𝑥(ℎ)  = the hydraulic conductivity in the x-direction as a function of h [cm h-1], 

rb  = radius of the biopores [cm], 

ℎ𝑏  = pressure in the biopore [cm], and 

h  = pressure in the soil matrix [cm]. 

As Db,c ≈ 1/(π∙r2
c,mean), this can be re-written to:  

Γ𝐵𝐹
𝐵𝐶𝑖 =

4𝜋𝐷𝑏,𝑐𝐾𝑥(ℎ)(ℎ
𝑏(𝑧) − ℎ(𝑧))

ln(𝐷𝑏,𝑐𝜋𝑟𝑏
2)

 
(36) 

 

For calculating the combined biopore sink/source term in Richards Equation (Eq. 1 

and 3) the sink/source terms for all biopore classes are summed:  

Γ𝐵𝑓 =∑Γ𝐵𝐹
𝐵𝐶𝑖

𝑁𝐶

𝑖=1

 (37) 

where NC is the number of all biopore classes.  

The hydraulic conductivity of the biopore wall may be different (lower) than the 

conductivity of the soil matrix due to accumulation of clay and organic matter. 

This can be considered by applying a relative conductivity of the wall, Kw. rw is the 

radius of the outer biopore wall, and rw/rb is set to 1.1. The flow from the biopore 

to the matrix can be described as:  

𝛤𝑏_𝑚 =
2𝜋𝐷𝑏(𝑖) ∗ 𝐾𝑥(ℎ)(ℎ𝑏(𝑧) − ℎ(𝑧))

𝑙𝑛 (
𝑟𝑚
𝑟𝑏
) − 𝑙𝑛 (

𝑟𝑤
𝑟𝑏
)

∙
𝑎

1 + 𝑎
 

 

(38) 

where 

𝑟𝑚 ≈ √
1

𝜋𝐷𝑏(𝑖)
 

Water flow from biopore 

to matrix 
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𝑎 = 𝐾𝑤 ∙

(𝑙𝑛
𝑟𝑚
𝑟𝑏
− 𝑙𝑛 (

𝑟𝑤
𝑟𝑏
))

𝑙𝑛 (
𝑟𝑤
𝑟𝑏
)

 

 

Water movement in the biopores is assumed to be instantaneous. Thus, water 

flowing into a matrix-terminating biopore is added directly to the bottom of the 

biopore, or if the biopore is partly filled, to the top of the water level. Water 

flowing into a drain-connected biopore is assumed to instantaneously move to the 

drain and is thus directly removed from the system (section 4.6).  

Macropore transport can be avoided using the command (tertiary none). 

The first macropore model <old> is still available in Daisy and works as default. 

The sub-module requires a distribution of pores, specified as a plf-function with 

depth points (negative [cm]) and the fraction of the pores ending at the given 

depth. The first point should indicate the depth of the deepest macropore and be 

combined with “1”, and the last point should be the depth of the shallowest 

macropore and be combined with “0”. It is assumed that the pores start at the 

surface. By default, the macropores extend from the top to 80-100 cm depth. In 

this interval, there is a linear decrease in the amount (from all pores active (1) to 

no pores active (0). The depth at which the macropores start and end can also be 

specified using optional parameters. In addition, the pressure, where macropore 

flow starts and where it ends can be specified (default -3 and -30 [cm], 

respectively), together with a ponding height, above which the water spills into 

macropores. This solution was default for all soils where the combined amount of 

humus and clay is above 5 %.  

4.8 Root water uptake  
Root water uptake is calculated as a steady-state flow towards the root surface 

applying the following assumptions (Hansen and Abrahamsen, 2009): 

1. The root extracts water from a cylindrical soil volume around it and the 

radius of this volume corresponds to half the average distance between 

the roots. 

2. Flow towards the root is radial and can be described by the Darcy 

equation. 

3. The pressure potential at the outer boundary of the considered soil 

cylinder equals the bulk pressure potential as obtained from the solution 

to Richard’s equation (Eq. 34 and 36).  

4. The potential drop towards the root surface can be approximated by a 

series of steady-state profiles.  

5. The plant determines the pressure potential at the root surface; however, 

this potential is limited by the permanent wilting point.  

6. At the root surface a contact resistance exist, which can be evaluated 

according to Herkelrath et al. (1977). 

Instantanous water 

movement in biopores 

No macropores included 

Default macropore 

model 
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Based on these assumptions, root water uptake, 𝛤𝑅𝑊𝑈, can be calculated as:  

𝛤𝑅𝑊𝑈 = 4𝜋𝐿𝑟𝑜
𝜃𝑟𝑜
𝜃𝑠

𝑀(ℎ𝑝) − 𝑀(ℎ𝑟𝑜)

−𝑙𝑛(𝑟𝑟𝑜
2 𝜋𝐿𝑟𝑜)

 (39) 

where: 

 

Lro = root density [cm cm-3], calculated from root biomass and specific root length. 

θro  = soil water content corresponding to the soil water at hro [cm3 cm-3], 

hro = pressure potential at the root surface [cm], 

rro = root radius [cm] and, 

M  = matrix flux potential which is a function of the pressure potential in the soil 

cylinder, from which the root is assumed to draw water, given by:  

𝑀(ℎ𝑝) = ∫ 𝐾𝑑ℎ
ℎ

−∞

 
(40) 

where:  

K  = the hydraulic conductivity, and 

h  = the pressure potential at the outer boundary of the cylindrical soil volume, 

from which the root is assumed to draw water.  

Two different situations for transpiration can occur: transpiration at potential rate 

and transpiration at a lower rate than potential.  

When transpiration takes place at potential rate, Ep,surf  (section 3.3), hro is 

calculated based on the assumption that an unknown pressure potential, 𝜓𝑥, exist 

at the transition between root and shoot. Based on this pressure potential, 𝜓𝑥, 

the pressure potential at the root surface is calculated as:  

ℎ𝑟𝑜 = 𝜓𝑥 + (1 + 𝑅𝑥) ∙ 𝑧 
(41) 

where:  

𝑅𝑥  = a vertical transport resistance coefficient [-] (default =10), 

𝑧  = is the vertical coordinate (with 0 at the surface and positive upwards) [cm], 

and 

𝜓𝑥  = an unknown pressure potential that is assumed to exist at the transition 

between root and shoot. 𝜓𝑥 (and hro) is found by iteration so the following 

condition is fulfilled: 

𝐸𝑡 = ∫ 𝛤𝑅𝑊𝑈𝑑𝑧
𝑧𝑟

0

 
(42) 

where: 

𝐸𝑡  = the transpiration rate of the crop [cm3 h-1], and  

Transpiration at potential 

rate 
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𝑧𝑟  = the rooting depth [cm]. 

When transpiration is limited by the soil water potential, it is assumed that a 

common pressure exists along the root and that both 𝜓𝑥 and ℎ𝑟𝑜 can be 

approximated by the wilting point (hwp, by default -15000 [cm]). Eq. 39 can then 

be solved directly.  

4.9 Water flow under frost and thaw condition 
When the soil temperature gets below 0 °C (chapter 5) the water in the soil starts 

to freeze. It is assumed that the formation of ice first takes place in the large 

pores, resulting in movement of water from the smaller to the larger pores. This 

lowers the pressure potential in the freezing soil, which results in upwards 

movement of water from beneath the freezing soil. Thus, water in the warmer 

subsoil is moving upwards to the freezing front.  

 

Figure 4.4. Illustration of how ice formation influences the effective retention curve. In this case, the 
volume above a water content of 0.3 is filled with ice, and the big pores within this volume are 
removed from the retention curve. Illustration by E.Diamantopoulos. 

When water freezes it expands, which together with the above-described water 

movement, results in lower air content in the soil. However, as long as air is still 

present within the soil, it is assumed that the pressure potential can be found 

from the content of liquid water by use of the soil water retention curve.  

As the ice content of the soil increases, the amount of liquid water required to 

establish a positive or zero pressure potential in the soil decreases, as it is 

assumed that ice occupies the larger pores in the soil. When the pressure 

potential in a freezing zone becomes zero or positive, the numerical procedure 

used to solve Richards Equation (Eq. 33 and 35) is no longer feasible. Thus, water 

movement in the freezing zone is calculated as:  

𝜕𝜃

𝜕𝑡
=
𝜕𝐾𝑧(ℎ𝑙𝑖𝑞)

𝜕𝑧
+ Γ𝑅𝑊𝑈 + Γ𝐷𝐹 + Γ𝐵𝐹 (43) 

Transpiration at a lower 

rate than potential.  
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where 𝐾𝑧(ℎ𝑙𝑖𝑞) denotes the vertical hydraulic conductivity estimated for the 

liquid water content present in the soil based on the soil water retention and 

hydraulic conductivity curves (section4.5). This procedure is applied until the 

freezing zone thaws and air again can enter the soil.  

 

Figure 4.5. Illustration of the change in apparent hydraulic conductivity due to ice formation. As the 
large pores are filled with ice, only the smaller pores contribute to the hydraulic conductivity. 
Illustration by E.Diamantopoulos. 

Below the freezing zone, in the unfrozen soil, water flow is calculated with 

Richard’s equation (Eq. 1 and 3) by applying a specified flux at a specified depth 

(the border between the frozen and non-frozen zone) as upper boundary 

condition (section 4.4.1).  

4.10 Numerical solutions 

4.10.1 1-dimensional numerical solution 
Richard’s equation is solved numerically using a finite difference scheme in the 

mixed formulation (Celia et al., 1990). For details, see section 4.9 in (Hansen et al., 

1990), available here. 

4.10.2 2-dimensional numerical solution 
Richard’s equation is solved numerically using a finite volume scheme. For details 

see the report: Num2D-v2, section 1.3, available here. 

 

4.11 Parameter overview 
 

https://daisy.ku.dk/pdfs/A10.pdf
https://daisy.ku.dk/pdfs/Num2D-v2.pdf
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Table 4.4. Related Parameter names in Daisy. 

Name and explanation Model (in Daisy) Parameter name  
(Daisy reference manual) 

Default Default unit 

1D discretization array Vertical  zplus Has default values, see 
section 4.1. 

[cm] 

2D vertical 

discretization  

array Rectangle  zplus User specified [cm] 

2D horizontal 

discretization 

array Rectangle  xplus User specified [cm] 

Clay Fraction of clay in 
soil. Definition of 
particles size depends 
on which soil 
classification scheme 
is used (see Table 
4.1) 

horizon clay User specified [fraction] 

Silt Fraction of silt in soil. 
Definition of particles 
size depends on 
which soil 
classification scheme 
is used (see Table 
4.1)). Can be divided 
into fine, medium, 
and coarse.  

horizon silt User specified [fraction] 

Sand Fraction of sand in 
soil. Definition of 
particles size depends 

horizon sand User specified [fraction] 
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Name and explanation Model (in Daisy) Parameter name  
(Daisy reference manual) 

Default Default unit 

on which soil 
classification scheme 
is used (see Table 
4.1)). Can be divided 
into very fine, fine, 
medium, coarse, and 
very coarse.  

humus Humus content of the 
soil. 

horizon humus User specified [fraction] 

chalk Chalk content of the 
soil 

horizon Chalk User specified [fraction] 

other Typically, larger 
mineral components 
(stones, pebbles). 

horizon Other User specified [fraction] 

Bulk density Dry bulk density of 
the soil 

horizon Dry_bulk_density User specified or 
calculated 

[g cm-3] 

θs Volumetric soil water 
content at saturation. 

Hydraulic Theta_sat User specified (or given by 
PTFs: HYPRES and Cosby). 

[fraction] 
[cm3 cm-3] 

θr Residual volumetric 
soil water content. 

Hydraulic Theta_res Generally, default = 0. 
However, in HYPWEB, 
default=0.01.  

[fraction] 

hb Bubbling pressure, 
air-entry value. 

Hydraulic h_b User specified (or given by 
PTF: Cosby) 

[cm] 

λ Brooks and Corey 
shape parameter. 
Poresize index. 

B_BaC, M_BaC lambda 

 

p 

 

 [-] 
 
[-] 
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Name and explanation Model (in Daisy) Parameter name  
(Daisy reference manual) 

Default Default unit 

p Shape parameter for 
hydraulic 
conductivity curves  

 p 

 
User specified or 
calculated, see section 
4.5. 

 

b Campbell shape 
parameter. 

B_C, M_C b User specified (or given by 
PTF: Cosby) 

[-] 

α Van Genuchten 
shape parameter 

B_vG, M_vG  alpha User specified (or given by 
PTF: HYPRES) 

[cm-1] 

n Van Genuchten 
shape parameter 

B_vG, M_vG n User specified (or given by 
PTF: HYPRES) 

 

“l” Tortuosity parameter Hydraulic l Default depending on 
model. 
B_BaC, B_C, B_vG : 2 
M_BaC, M_C, MvG: 0.5 
(or given by PTF: HYPRES) 

[-] 

Ks Saturated hydraulic 
conductivity 

Hydraulic Ks All hydraulic conductivity 
models 

[cm h-1] 

anisotropy Horizontal saturated 
water conductivity 
relative to vertical 
saturated water 
conductivity. 

horizon anisotropy 1 [-] 

 Static groundwater 
level given as a 
negative number 
below surface. 

Groundwater fixed table User specified [cm] 
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Name and explanation Model (in Daisy) Parameter name  
(Daisy reference manual) 

Default Default unit 

 Data describing a 
varying groundwater 
table.  

Groundwater file file Name of file to read data 
from. File must be 
structured as YEAR 
MONTH DAY HEIGHT 

HEIGHT [groundwater 
level given as cm 
above soil surface) 

 Offset to add to 
datapoint from file. 

Groundwater file offset Default 0 [cm] 

 Constant flux to the 
groundwater. 

Groundwater flux flux User defined [cm h-1] 

Ka Conductivity of the 
aquitard. 

Groundwater 
Aquitard 

K_aquitard Default 0.001 [cm h-1] 

Δza Height of the 
aquitard. 

Groundwater 
Aquitard 

Z_aquitard Default 200 [cm] 

ha Pressure potential in 
the aquifer at the 
interphase between 
the aquitard and the 
aquifer. 

Groundwater 
Aquitard 

h_aquitard Optional. As default equal 
to z_aquitard. 

[cm] 

 Height of 
groundwater that 
corresponds to the 
pressure in the 
aquifer.  

Groundwater 
Aquitard 

pressure_table Optional. [cm] 

 Depth of soil layer 
where both upward 
and downward water 

lr (uzrect)  z_top -10 [cm] 
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Name and explanation Model (in Daisy) Parameter name  
(Daisy reference manual) 

Default Default unit 

movement is 
calculated. 

 Pressure at field 
capacity. 

lr (uzrect) h_fc -100 [cm] 

 Constant steady state 
water flow in 
horizontal direction. 

const (uzrect) q_x 0 [cm h-1] 

 Constant steady state 
water flow in upward 
vertical direction. 

const (uzrect) q_z 0 [cm h-1] 

L Distance between 
drainpipes. 

Drain Lateral L Default 1800 [cm] 

Δx Horizontal distance 
between soil column 
and nearest 
drainpipe.  

Drain Lateral x Default ½L  [cm] 

r Inner radius of 
drainpipe. 

Drain Lateral rad Default 3.5 [cm] 

 Current ground water 
level 

Drain Lateral height Optional parameter  

 Water table in drain 
pipe outlet. 

Drain Lateral pipe_outlet By default, “deep”, 
identical to pipe_position, 
equal to free flow. Can 
vary over time, see ref. 
manual for options under 
“depth”.  

[cm] 



26 
 

Name and explanation Model (in Daisy) Parameter name  
(Daisy reference manual) 

Default Default unit 

 Height where 
drainpipes are placed 
in the soil.  

Drain Lateral pipe_position Default -110 [cm] 

 Model selected for 
calculation of 
equivalent depth for 
Hooghoud’s 
equation. 

Drain Lateral eq_depth MolenWesseling  

 Horizontal 
conductivity in 
saturated soil  

Drain Lateral k_to_pipes Optional parameter. By 
default calculated from 
the hydrological 
conductivity and the 
anisotropy of the horizon. 

[cm h-1] 

 Current effective pipe 
position 

Drain Lateral pipe_level Optional state variable [cm] 

hinit Matrix pressure 
needed to activate 
waterflow towards 
biopores. 

Tertiary Biopores 
Tertary old (macro) 

pressure_initiate Default -3 [cm] 

hterm Matrix pressure 
needed to deactivate 
waterflow towards 
biopores. 

Tertiary Biopores 
Tertary old (macro) 

pressure_end Default -30 [cm] 

 Maximum height of 
ponding water before 

Tertiary Biopores 
Tertary old (macro) 

pond_max Default 0.05 [cm] 
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Name and explanation Model (in Daisy) Parameter name  
(Daisy reference manual) 

Default Default unit 

infiltrating to 
biopores. 

 Pressure difference 
needed between 
matrix and biopores 
for water movement 
to and from biopores. 

Tertiary Biopores pressure_barrier Default 5 [cm] 

ztop The height where 
biopore starts 

Biopore 
old 

height_start User defined 
Optional parameter 

[cm] 

zbot The height where 
biopores end 

Biopore 
old 

height_end User defined 
Optional parameter 

[cm] 

Db,c Biopore density, 
combined, eq. (45, 
46) 

Biopore density User defined [biopores cm-2] 

rb Radius of the 
biopore, eq. (45, 46) 

Biopore Diameter (2*radius) User defined [cm] 

Kw Relative conductivity 
of the biopore wall 
compared to matrix, 
Eq (48) 

Biopore matrix K_wall_relative User defined [-] 

 Distribution of 
macropore end 
points as a function 
of height 

Tertary old distribution User defined, default is 
pores from the top to 80-
100 cm depth, the 
amount decreasing 
linearly, for all soils with 
humus%+clay%> 5% 
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Name and explanation Model (in Daisy) Parameter name  
(Daisy reference manual) 

Default Default unit 

rro Radius of roots, eq. 
(49) 

Rootsystem rad Default 0.005 [cm] 

hwp Matrix potential at 
wilting point 

Rootsystem h_wp Default: 15000 [cm] 

Rx Transport resistance 
in the xylem, eq. (51) 

 Rxylem Default: 10 [ ] 
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4.12 Appendices 

4.1: Additional hydraulic functions. 

4.2: Options for calculation of equivalent depth in Hooghoudt’s equation. 
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